文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用多b值扩散加权成像预测胶质瘤的异柠檬酸脱氢酶(IDH)和1p/19q分子状态

Predicting IDH and 1p/19q molecular status of gliomas with multi-b values DWI.

作者信息

Zhao Shanshan, Wang Peipei, Gao Eryuan, Wang Mengzhu, Yang Guang, Niu Shouhui, Pan Mengjiao, Zhao Kai, Cheng Jingliang, Ma Xiaoyue

机构信息

Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

MR Research Collaboration, Siemens Healthineers Ltd., Beijing, China.

出版信息

Front Oncol. 2025 Jul 30;15:1551023. doi: 10.3389/fonc.2025.1551023. eCollection 2025.


DOI:10.3389/fonc.2025.1551023
PMID:40809035
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12344946/
Abstract

BACKGROUND AND PURPOSE: In the 2021 WHO Classification, the importance of molecular pathology in glioma diagnosis has been emphasized, particularly the status of isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion. Advanced magnetic resonance diffusion-weighted imaging (DWI) including mono-exponential (Mono), intravoxel incoherent motion (IVIM), stretched exponential model (SEM) techniques are beneficial for non-invasive prediction of these molecular markers. The continuous-time random walk (CTRW) model mitigates the empirical nature of the SEM and has shown promising results in grading gliomas. However, the application of CTRW model in prediction of IDH and 1p/19q molecular phenotypes in adult diffuse gliomas remains underreported. This study compares the clinical utility of mono-exponential, IVIM, SEM, and CTRW models for predicting IDH and 1p/19q molecular status in adult diffuse gliomas. MATERIALS AND METHODS: Data of adult diffuse glioma patients from January 2021 to August 2023 were collected. The multi-b-value DWI was acquired using a spin-echo echo-planar imaging sequence with 13 b-values (0, 10, 20, 30, 50, 70, 100, 150, 200, 400, 800, 1500, 2000 s/mm²) in 30 diffusion-encoding directions. Multi-b-value DWI images were post-processed to generate parametric maps based on the mono-exponential (Mono), the intravoxel incoherent motion (IVIM), the stretched exponential model (SEM) and the continuous-time random walk (CTRW) models. The mean parameter values of solid tumor regions were calculated. An independent sample -test or Mann-Whitney test was used for comparisons between different subtypes of glioma. Receiver operating characteristic (ROC) analyses were used to assess diagnostic performance. RESULTS: A total of 95 glioma patients were included in the study. For predicting IDH status, CTRW_α exhibited the largest effect size and best diagnostic performance with an AUC of 0.761. At a threshold of 0.855, the sensitivity was 0.651, the specificity was 0.846, and the accuracy was 0.758. In predicting 1p/19q status in IDH-mutant gliomas, CTRW_α again showed the largest effect size and the best diagnostic performance with an AUC of 0.790. At a threshold of 0.886, sensitivity was 0.750, specificity was 0.903, and accuracy was 0.860. CONCLUSIONS: The CTRW model could help predict IDH and 1p/19q status in adult diffuse gliomas.

摘要

背景与目的:在2021年世界卫生组织分类中,分子病理学在胶质瘤诊断中的重要性得到了强调,尤其是异柠檬酸脱氢酶(IDH)突变和1p/19q共缺失的状态。包括单指数(Mono)、体素内不相干运动(IVIM)、拉伸指数模型(SEM)技术在内的先进磁共振扩散加权成像(DWI)有利于对这些分子标志物进行无创预测。连续时间随机游走(CTRW)模型减轻了SEM的经验性质,并在胶质瘤分级中显示出有前景的结果。然而,CTRW模型在预测成人弥漫性胶质瘤中IDH和1p/19q分子表型方面的应用仍报道较少。本研究比较了单指数、IVIM、SEM和CTRW模型在预测成人弥漫性胶质瘤中IDH和1p/19q分子状态方面的临床效用。 材料与方法:收集2021年1月至2023年8月成人弥漫性胶质瘤患者的数据。使用自旋回波平面成像序列,在30个扩散编码方向上获取具有13个b值(0、10、20、30、50、70、100、150、200、400、800、1500、2000 s/mm²)的多b值DWI。对多b值DWI图像进行后处理,以基于单指数(Mono)、体素内不相干运动(IVIM)、拉伸指数模型(SEM)和连续时间随机游走(CTRW)模型生成参数图。计算实体瘤区域的平均参数值。采用独立样本t检验或曼-惠特尼检验对不同亚型的胶质瘤进行比较。采用受试者操作特征(ROC)分析来评估诊断性能。 结果:本研究共纳入95例胶质瘤患者。对于预测IDH状态,CTRW_α表现出最大的效应量和最佳的诊断性能,AUC为0.761。在阈值为0.855时,灵敏度为0.651,特异性为0.846,准确率为0.758。在预测IDH突变型胶质瘤的1p/19q状态时,CTRW_α再次表现出最大的效应量和最佳的诊断性能,AUC为0.790。在阈值为0.886时,灵敏度为0.750,特异性为0.903,准确率为0.860。 结论:CTRW模型有助于预测成人弥漫性胶质瘤中IDH和1p/19q的状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/12344946/337c85b67524/fonc-15-1551023-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/12344946/c2d8ab9e5f90/fonc-15-1551023-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/12344946/1e843f5da19d/fonc-15-1551023-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/12344946/e34458961b62/fonc-15-1551023-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/12344946/337c85b67524/fonc-15-1551023-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/12344946/c2d8ab9e5f90/fonc-15-1551023-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/12344946/1e843f5da19d/fonc-15-1551023-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/12344946/e34458961b62/fonc-15-1551023-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2a5/12344946/337c85b67524/fonc-15-1551023-g004.jpg

相似文献

[1]
Predicting IDH and 1p/19q molecular status of gliomas with multi-b values DWI.

Front Oncol. 2025-7-30

[2]
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.

Cochrane Database Syst Rev. 2022-3-2

[3]
Differentiation of Postoperative Tumor Recurrence and Pseudoprogression in Gliomas: A Comparative Study of Six Diffusion Models.

Acad Radiol. 2025-8-6

[4]
Continuous-time random walk and fractional order calculus models histogram analysis of glioma biomarkers, including , , , and , on differentiation.

Quant Imaging Med Surg. 2025-7-1

[5]
Incorporation of Edited MRS into Clinical Practice May Improve Care of Patients with -Mutant Glioma.

AJNR Am J Neuroradiol. 2025-1-8

[6]
Deep learning-based quantification of T2-FLAIR mismatch sign: extending IDH mutation prediction in adult-type diffuse lower-grade glioma.

Eur Radiol. 2025-3-7

[7]
Role of dynamic contrast-enhanced and dynamic susceptibility contrast imaging in evaluating the biological features of glioma.

Quant Imaging Med Surg. 2025-8-1

[8]
Characterizing Breast Tumor Heterogeneity Through IVIM-DWI Parameters and Signal Decay Analysis.

Diagnostics (Basel). 2025-6-12

[9]
Nonenhancing Margin and Pial Invasion in Magnetic Resonance Imaging can Predict Isocitrate Dehydrogenase Status in Glioma Patients.

World Neurosurg. 2025-3

[10]
Prediction of 1p/19q state in glioma by integrated deep learning method based on MRI radiomics.

BMC Cancer. 2025-7-28

本文引用的文献

[1]
Deep Learning for MRI Segmentation and Molecular Subtyping in Glioblastoma: Critical Aspects from an Emerging Field.

Biomedicines. 2024-8-16

[2]
Whole-tumor histogram analysis of multiple non-Gaussian diffusion models at high b values for assessing cervical cancer.

Abdom Radiol (NY). 2024-7

[3]
MRI Scoring Systems for Predicting Isocitrate Dehydrogenase Mutation and Chromosome 1p/19q Codeletion in Adult-type Diffuse Glioma Lacking Contrast Enhancement.

Radiology. 2024-5

[4]
Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach.

BMC Med Imaging. 2024-5-3

[5]
Advancing noninvasive glioma classification with diffusion radiomics: Exploring the impact of signal intensity normalization.

Neurooncol Adv. 2024-3-22

[6]
Multiple diffusion metrics in differentiating solid glioma from brain inflammation.

Front Neurosci. 2024-1-30

[7]
Discrimination between human epidermal growth factor receptor 2 (HER2)-low-expressing and HER2-overexpressing breast cancers: a comparative study of four MRI diffusion models.

Eur Radiol. 2024-4

[8]
Evaluation of breast cancer malignancy, prognostic factors and molecular subtypes using a continuous-time random-walk MR diffusion model.

Eur J Radiol. 2023-9

[9]
A concise continuous time random-walk diffusion model for characterization of non-exponential signal decay in magnetic resonance imaging.

Magn Reson Imaging. 2023-11

[10]
Cortical high-flow sign on arterial spin labeling: a novel biomarker for IDH-mutation and 1p/19q-codeletion status in diffuse gliomas without intense contrast enhancement.

Neuroradiology. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索