IEEE Trans Biomed Circuits Syst. 2021 Dec;15(6):1454-1466. doi: 10.1109/TBCAS.2021.3133133. Epub 2022 Feb 17.
Low-intensity transcranial focused ultrasound stimulation (tFUS), as a noninvasive neuromodulation modality, has shown to be effective in animals and even humans with improved millimeter-scale spatial resolution compared to its noninvasive counterparts. But conventional tFUS systems are built with bulky single-element ultrasound (US) transducers that must be mechanically moved to change the stimulation target. To achieve large-scale ultrasound neuromodulation (USN) within a given tissue volume, a US transducer array should electronically be driven in a beamforming fashion (known as US phased array) to steer focused ultrasound beams towards different neural targets. This paper presents the theory and design methodology of US phased arrays for USN at a large scale. For a given tissue volume and sonication frequency (f), the optimal geometry of a US phased array is found with an iterative design procedure that maximizes a figure of merit (FoM) and minimizes side/grating lobes (avoiding off-target stimulation). The proposed FoM provides a balance between the power efficiency and spatial resolution of a US array in USN. A design example of a US phased array has been presented for USN in a rat's brain with an optimized linear US array. In measurements, the fabricated US phased array with 16 elements (16.7×7.7×2 mm), driven by 150 V (peak-peak) pulses at f = 833.3 kHz, could generate a focused US beam with a lateral resolution of 1.6 mm and pressure output of 1.15 MPa at a focal distance of 12 mm. The capability of the US phased array in beam steering and focusing from -60 to 60 angles was also verified in measurements.
低强度经颅聚焦超声刺激(tFUS)作为一种非侵入性神经调节方式,已在动物甚至人类中显示出有效性,与非侵入性的同类方法相比,其空间分辨率提高了毫米级。但传统的 tFUS 系统采用体积庞大的单阵元超声(US)换能器构建,必须通过机械移动来改变刺激目标。为了在给定的组织体积内实现大规模超声神经调节(USN),US 换能器阵列应该以波束形成的方式(称为 US 相控阵)进行电子驱动,以将聚焦超声束引导至不同的神经靶标。本文提出了用于大规模 USN 的 US 相控阵的理论和设计方法。对于给定的组织体积和超声频率(f),通过迭代设计过程找到 US 相控阵的最佳几何形状,该过程最大化了性能指标(FoM)并最小化了旁瓣/栅瓣(避免非目标刺激)。所提出的 FoM 在 US 阵列的功率效率和空间分辨率之间提供了平衡。已经提出了用于大鼠脑内 USN 的 US 相控阵设计示例,该示例采用优化的线性 US 阵列。在测量中,由 150 V(峰峰值)脉冲驱动、具有 16 个阵元(16.7×7.7×2mm)的制造 US 相控阵可以在 12mm 的焦距处产生具有 1.6mm 横向分辨率和 1.15MPa 压力输出的聚焦 US 波束。还在测量中验证了 US 相控阵在从-60 到 60 度的波束转向和聚焦的能力。