Suppr超能文献

深度学习揭示了早期帕金森病患者脑电图中高 delta 和低 alpha 波段的个性化空间频谱异常。

Deep learning reveals personalized spatial spectral abnormalities of high delta and low alpha bands in EEG of patients with early Parkinson's disease.

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China.

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.

出版信息

J Neural Eng. 2021 Dec 24;18(6). doi: 10.1088/1741-2552/ac40a0.

Abstract

Parkinson's disease (PD) is one of the most common neurodegenerative diseases, and early diagnosis is crucial to delay disease progression. The diagnosis of early PD has always been a difficult clinical problem due to the lack of reliable biomarkers. Electroencephalogram (EEG) is the most common clinical detection method, and studies have attempted to discover the EEG spectrum characteristics of early PD, but the reported conclusions are not uniform due to the heterogeneity of early PD patients. There is an urgent need for a more advanced algorithm to extract spectrum characteristics from EEG to satisfy the personalized requirements.The structured power spectral density with spatial distribution was used as the input of convolutional neural network (CNN). A visualization technique called gradient-weighted class activation mapping was used to extract the optimal frequency bands for identifying early PD. Based on the model visualization, we proposed a novel quantitative index of spectral characteristics, spatial-mapping relative power (SRP), to detect personalized abnormalities in the spatial spectral characteristics of EEG in early PD.We demonstrated the feasibility of applying CNN to identify the patients with early PD with an accuracy of 99.87% ± 0.03%. The models indicated the characteristic frequency bands (high-delta (3.5-4.5 Hz) and low-alpha (7.5-11 Hz) frequency bands) that are used to identify the early PD. The SRP of these two characteristic bands in early PD patients was significantly higher than that in the control group, and the abnormalities were consistent at the group and individual levels.This study provides a novel personalized detection algorithm based on deep learning to reveal the optimal frequency bands for identifying early PD and obtain the spatial frequency characteristics of early PD. The findings of this study will provide an effective reference for the auxiliary diagnosis of early PD in clinical practice.

摘要

帕金森病(PD)是最常见的神经退行性疾病之一,早期诊断对于延缓疾病进展至关重要。由于缺乏可靠的生物标志物,早期 PD 的诊断一直是一个临床难题。脑电图(EEG)是最常见的临床检测方法,已有研究试图发现早期 PD 的 EEG 频谱特征,但由于早期 PD 患者的异质性,报道的结论并不一致。需要更先进的算法从 EEG 中提取频谱特征,以满足个性化需求。

具有空间分布的结构化功率谱密度被用作卷积神经网络(CNN)的输入。使用一种称为梯度加权类激活映射的可视化技术来提取识别早期 PD 的最佳频率带。基于模型可视化,我们提出了一种新的光谱特征定量指标——空间映射相对功率(SRP),以检测早期 PD 患者 EEG 空间光谱特征的个性化异常。

我们证明了将 CNN 应用于识别早期 PD 患者的可行性,准确率为 99.87%±0.03%。该模型表明了用于识别早期 PD 的特征频率带(高 delta(3.5-4.5 Hz)和低 alpha(7.5-11 Hz)频段)。早期 PD 患者这两个特征带的 SRP 明显高于对照组,且在组内和个体水平上均存在异常。

这项研究提供了一种基于深度学习的新的个性化检测算法,用于揭示识别早期 PD 的最佳频率带,并获取早期 PD 的空间频率特征。该研究的结果将为临床实践中早期 PD 的辅助诊断提供有效的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验