文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

COVID-19 患者肺部的单细胞转录组图谱。

A single-cell transcriptomic landscape of the lungs of patients with COVID-19.

机构信息

State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, China.

出版信息

Nat Cell Biol. 2021 Dec;23(12):1314-1328. doi: 10.1038/s41556-021-00796-6. Epub 2021 Dec 7.


DOI:10.1038/s41556-021-00796-6
PMID:34876692
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8650955/
Abstract

The lung is the primary organ targeted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), making respiratory failure a leading coronavirus disease 2019 (COVID-19)-related mortality. However, our cellular and molecular understanding of how SARS-CoV-2 infection drives lung pathology is limited. Here we constructed multi-omics and single-nucleus transcriptomic atlases of the lungs of patients with COVID-19, which integrate histological, transcriptomic and proteomic analyses. Our work reveals the molecular basis of pathological hallmarks associated with SARS-CoV-2 infection in different lung and infiltrating immune cell populations. We report molecular fingerprints of hyperinflammation, alveolar epithelial cell exhaustion, vascular changes and fibrosis, and identify parenchymal lung senescence as a molecular state of COVID-19 pathology. Moreover, our data suggest that FOXO3A suppression is a potential mechanism underlying the fibroblast-to-myofibroblast transition associated with COVID-19 pulmonary fibrosis. Our work depicts a comprehensive cellular and molecular atlas of the lungs of patients with COVID-19 and provides insights into SARS-CoV-2-related pulmonary injury, facilitating the identification of biomarkers and development of symptomatic treatments.

摘要

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)主要靶向肺部,导致呼吸衰竭成为导致 2019 冠状病毒病(COVID-19)相关死亡的主要原因。然而,我们对 SARS-CoV-2 感染如何导致肺部病理的细胞和分子理解还很有限。在这里,我们构建了 COVID-19 患者肺部的多组学和单细胞转录组图谱,整合了组织学、转录组和蛋白质组学分析。我们的工作揭示了与 SARS-CoV-2 感染相关的不同肺部和浸润免疫细胞群中病理特征的分子基础。我们报告了过度炎症、肺泡上皮细胞衰竭、血管变化和纤维化的分子特征,并确定实质肺衰老为 COVID-19 病理学的一种分子状态。此外,我们的数据表明,FOXO3A 抑制是与 COVID-19 肺纤维化相关的成纤维细胞向肌成纤维细胞转化的潜在机制。我们的工作描绘了 COVID-19 患者肺部的全面细胞和分子图谱,并为 SARS-CoV-2 相关的肺部损伤提供了深入了解,有助于识别生物标志物和开发对症治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/b19a507c7e98/41556_2021_796_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/efd8986d7768/41556_2021_796_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/1f684134bba7/41556_2021_796_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/ada690e689bf/41556_2021_796_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/6802ab31fac0/41556_2021_796_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/0a010a016d6a/41556_2021_796_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/f4ba8653a3ef/41556_2021_796_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/a8fd14753080/41556_2021_796_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/ac952944250d/41556_2021_796_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/bdc376bffac7/41556_2021_796_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/ea64820d8fd7/41556_2021_796_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/6398e559a721/41556_2021_796_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/9433ffddde09/41556_2021_796_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/763527b5d111/41556_2021_796_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/f25ef226d584/41556_2021_796_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/bc9c03d63a33/41556_2021_796_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/b19a507c7e98/41556_2021_796_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/efd8986d7768/41556_2021_796_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/1f684134bba7/41556_2021_796_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/ada690e689bf/41556_2021_796_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/6802ab31fac0/41556_2021_796_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/0a010a016d6a/41556_2021_796_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/f4ba8653a3ef/41556_2021_796_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/a8fd14753080/41556_2021_796_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/ac952944250d/41556_2021_796_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/bdc376bffac7/41556_2021_796_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/ea64820d8fd7/41556_2021_796_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/6398e559a721/41556_2021_796_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/9433ffddde09/41556_2021_796_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/763527b5d111/41556_2021_796_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/f25ef226d584/41556_2021_796_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/bc9c03d63a33/41556_2021_796_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb8/8650955/b19a507c7e98/41556_2021_796_Fig16_ESM.jpg

相似文献

[1]
A single-cell transcriptomic landscape of the lungs of patients with COVID-19.

Nat Cell Biol. 2021-12

[2]
Lung Epithelial Cell Transcriptional Regulation as a Factor in COVID-19-associated Coagulopathies.

Am J Respir Cell Mol Biol. 2021-6

[3]
A molecular single-cell lung atlas of lethal COVID-19.

Nature. 2021-7

[4]
Comparative transcriptome analyses reveal genes associated with SARS-CoV-2 infection of human lung epithelial cells.

Sci Rep. 2021-8-10

[5]
Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes.

Elife. 2020-11-9

[6]
SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis.

Microbiol Spectr. 2021-12-22

[7]
Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.

Protein Cell. 2021-9

[8]
Pneumocytes are distinguished by highly elevated expression of the ER stress biomarker GRP78, a co-receptor for SARS-CoV-2, in COVID-19 autopsies.

Cell Stress Chaperones. 2021-9

[9]
Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity.

Nat Commun. 2021-7-14

[10]
The spatial landscape of lung pathology during COVID-19 progression.

Nature. 2021-5

引用本文的文献

[1]
Single-cell transcriptomic atlas of blood and lung from mice infected with SARS-CoV-2 revealing distinct virulence characteristics between prototype and Omicron BA.1 strain.

Virulence. 2025-12

[2]
Immunotherapy and senolytics in head and neck squamous cell carcinoma: phase 2 trial results.

Nat Med. 2025-8-25

[3]
Ageing and dysregulated lung immune responses in fatal COVID-19.

Immun Ageing. 2025-7-17

[4]
A single-cell transcriptomic atlas reveals senescence and inflammation in the post-tuberculosis human lung.

Nat Microbiol. 2025-7-14

[5]
The SARS-CoV-2 envelope PDZ binding motif acts as a virulence factor disrupting host's epithelial cell-cell junctions.

Cell Mol Biol Lett. 2025-7-11

[6]
Single-cell profiling identifies hair cell SLC35F1 deficiency as a signature of primate cochlear aging.

Nat Aging. 2025-6-20

[7]
Transcriptomic analysis reveals shared deregulated neutrophil responses in COVID-19 and idiopathic pulmonary fibrosis.

Respir Res. 2025-6-11

[8]
MixOmics Integration of Biological Datasets Identifies Highly Correlated Variables of COVID-19 Severity.

Int J Mol Sci. 2025-5-15

[9]
The underlying mechanism behind the different outcomes of COVID-19 in children and adults.

Front Immunol. 2025-4-30

[10]
The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging.

Ageing Res Rev. 2025-7

本文引用的文献

[1]
Pathological changes in the lungs and lymphatic organs of 12 COVID-19 autopsy cases.

Natl Sci Rev. 2020-9-29

[2]
Virus-induced senescence is a driver and therapeutic target in COVID-19.

Nature. 2021-11

[3]
Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19: Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial.

Int J Gen Med. 2021-6-24

[4]
Senolytics reduce coronavirus-related mortality in old mice.

Science. 2021-7-16

[5]
Single-nucleus transcriptomic landscape of primate hippocampal aging.

Protein Cell. 2021-9

[6]
COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets.

Nature. 2021-7

[7]
A molecular single-cell lung atlas of lethal COVID-19.

Nature. 2021-7

[8]
COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas.

Cell. 2021-4-1

[9]
Multi-organ proteomic landscape of COVID-19 autopsies.

Cell. 2021-2-4

[10]
Autopsy Findings and Venous Thromboembolism in Patients With COVID-19.

Ann Intern Med. 2020-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索