Suppr超能文献

MEA-CNDP:一种用于求解双目标关键节点检测问题的膜进化算法。

MEA-CNDP: A Membrane Evolutionary Algorithm for Solving Biobjective Critical Node Detection Problem.

机构信息

College of Computer Science, Chongqing University, Chongqing 400044, China.

Chongqing Key Laboratory of Software Theory and Technology, Chongqing 400044, China.

出版信息

Comput Intell Neurosci. 2021 Nov 28;2021:8406864. doi: 10.1155/2021/8406864. eCollection 2021.

Abstract

The critical node detection problem (CNDP) refers to the identification of one or more nodes that have a significant impact on the entire complex network according to the importance of each node in a complex network. Most methods consider the CNDP as a single-objective optimization problem, which requires more prior knowledge to a certain extent. This paper proposes a membrane evolution algorithm MEA-CNDP to solve biobjective CNDP. MEA-CNDP includes a population initialization strategy based on the evaluation of decision variables, a strategy to transform the main objective, a strategy to update the membrane inherited pool, and four membrane evolutionary operators. The numerical experiments on 16 benchmark problems with random and logarithmic weights show that MEA-CNDP outperforms other algorithms in most cases. In particular, MEA-CNDP has unique advantages in dealing with large-scale sparse bi-CNDP.

摘要

关键节点检测问题(CNDP)是指根据复杂网络中每个节点的重要性,确定一个或多个对整个复杂网络有重大影响的节点。大多数方法将 CNDP 视为单目标优化问题,这在某种程度上需要更多的先验知识。本文提出了一种膜进化算法 MEA-CNDP 来解决双目标 CNDP。MEA-CNDP 包括基于决策变量评估的种群初始化策略、主目标转换策略、膜遗传池更新策略和四个膜进化算子。在具有随机和对数权重的 16 个基准问题上的数值实验表明,MEA-CNDP 在大多数情况下优于其他算法。特别是,MEA-CNDP 在处理大规模稀疏双 CNDP 方面具有独特的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b7/8645377/7389579fc8c2/CIN2021-8406864.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验