College of Computer Science, Chongqing University, Chongqing 400044, China.
Chongqing Key Laboratory of Software Theory and Technology, Chongqing 400044, China.
Comput Intell Neurosci. 2021 Nov 28;2021:8406864. doi: 10.1155/2021/8406864. eCollection 2021.
The critical node detection problem (CNDP) refers to the identification of one or more nodes that have a significant impact on the entire complex network according to the importance of each node in a complex network. Most methods consider the CNDP as a single-objective optimization problem, which requires more prior knowledge to a certain extent. This paper proposes a membrane evolution algorithm MEA-CNDP to solve biobjective CNDP. MEA-CNDP includes a population initialization strategy based on the evaluation of decision variables, a strategy to transform the main objective, a strategy to update the membrane inherited pool, and four membrane evolutionary operators. The numerical experiments on 16 benchmark problems with random and logarithmic weights show that MEA-CNDP outperforms other algorithms in most cases. In particular, MEA-CNDP has unique advantages in dealing with large-scale sparse bi-CNDP.
关键节点检测问题(CNDP)是指根据复杂网络中每个节点的重要性,确定一个或多个对整个复杂网络有重大影响的节点。大多数方法将 CNDP 视为单目标优化问题,这在某种程度上需要更多的先验知识。本文提出了一种膜进化算法 MEA-CNDP 来解决双目标 CNDP。MEA-CNDP 包括基于决策变量评估的种群初始化策略、主目标转换策略、膜遗传池更新策略和四个膜进化算子。在具有随机和对数权重的 16 个基准问题上的数值实验表明,MEA-CNDP 在大多数情况下优于其他算法。特别是,MEA-CNDP 在处理大规模稀疏双 CNDP 方面具有独特的优势。