Suppr超能文献

通过柔性活性固体电解质界面层实现的长寿命和高倍率充电锂金属电池

Long-Life and High-Rate-Charging Lithium Metal Batteries Enabled by a Flexible Active Solid Electrolyte Interphase Layer.

作者信息

Zhang Da, Gu Rong, Guo Wenyao, Xu Qunjie, Li Hexing, Min YuLin

机构信息

Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P.R. China.

Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China.

出版信息

ACS Appl Mater Interfaces. 2021 Dec 22;13(50):60678-60688. doi: 10.1021/acsami.1c19952. Epub 2021 Dec 8.

Abstract

Commercially, lithium metal batteries are still limited by the growth of lithium dendrites and excessive consumption of the electrolyte. A stable multifunctional solid electrolyte interface is the development strategy of lithium metal batteries in the future. However, most of the artificial solid electrolyte interphases (SEIs) cannot meet the original intention of multifunctional design and cannot form an SEI film with a high conductivity and low nucleation potential. In this work, we report a universal and simple method of adding multifunctional fluorosulfonate to a commercial electrolyte, so increasing the inorganic LiF in the SEI. In addition, the imidazole ring in the fluorosulfonate combines with the alkyl group in the electrolyte to form a flexible interface layer, which inhibits the growth of lithium dendrites and makes lithium deposition more uniform, thereby realizing a stable fast charge cycle. With an ultralow capacity of 2 mAh/cm deposited, the symmetrical battery can be deposited stably for nearly 300 h at a high current density of 20 mA/cm. The capacity retention rate of the Li-LiFePO (LFP) full cell was still at 90.6% after 1000 cycles at 5 C. Even with 5 C high-rate fast charging, the capacity was maintained at 76.56% after 200 cycles, which is four times that of commercial electrolytes. This simple addition strategy gives insights into the practical application of the new electrolyte and provides a new idea for the construction of a stable SEI for commercial lithium metal batteries.

摘要

在商业应用中,锂金属电池仍然受到锂枝晶生长和电解质过度消耗的限制。稳定的多功能固体电解质界面是未来锂金属电池的发展策略。然而,大多数人工固体电解质界面(SEI)无法满足多功能设计的初衷,无法形成具有高电导率和低成核电位的SEI膜。在这项工作中,我们报道了一种通用且简单的方法,即在商业电解质中添加多功能氟磺酸盐,从而增加SEI中的无机LiF。此外,氟磺酸盐中的咪唑环与电解质中的烷基结合形成柔性界面层,抑制锂枝晶的生长并使锂沉积更加均匀,从而实现稳定的快速充电循环。在沉积容量低至2 mAh/cm²的情况下,对称电池在20 mA/cm²的高电流密度下可稳定沉积近300小时。Li-LiFePO₄(LFP)全电池在5 C下1000次循环后容量保持率仍为90.6%。即使在5 C高倍率快速充电的情况下,200次循环后容量仍保持在76.56%,是商业电解质的四倍。这种简单的添加策略为新型电解质的实际应用提供了思路,并为商业锂金属电池构建稳定的SEI提供了新的想法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验