Department of Immunology, Institute of Biomedical Sciences-IV, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil.
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil.
J Mater Chem B. 2022 Jan 5;10(2):247-261. doi: 10.1039/d1tb01870a.
The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle-cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu/Mn co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu/Mn codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu concentration at a fixed amount of Mn, systematically enhancing the Mn emission intensity energy transfer from the Eu to Mn ion. The ZnSe:Eu/Mn@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.
基于 QD 的荧光生物纳米探针的发展主要依赖于对颗粒-细胞相互作用、细胞内外 QD 的光学性质、颗粒进出细胞的运动以及颗粒命运的精确了解。我们报道了水散Eu/Mn 共掺杂 ZnSe@ZnS 核/壳 QD 的工程和物理化学特性,并研究了它们作为生物医学应用的生物纳米探针的潜力,评估了它们的生物相容性、CytoViva 双模式荧光成像的荧光行为、在 RAW 264.7 巨噬细胞中的时间依赖性摄取、内吞作用和胞吐作用。通过 X 射线吸收精细结构 (XAFS) 分析研究的 Eu 掺杂剂的氧化态和局部原子结构表明,Eu 离子占据了核/壳 QD 中 ZnSe 和 ZnS 晶格的位置。开发了一种新方法来缓解宽禁带 ZnSe 的激发约束,通过共掺入 Eu/Mn 共掺杂剂,使 QD 能够在宽的紫外-可见范围内被激发。随着 Mn 浓度的逐渐增加,QD 的发射颜色逐渐变化,Eu 浓度固定,Mn 发射强度和能量从 Eu 到 Mn 离子的转移得到系统增强。ZnSe:Eu/Mn@ZnS QD 的细胞存活率高于 85%,且不会引起细胞激活。通过双模式荧光 CytoViva 显微镜对 QD 处理的细胞进行的详细分析证实了系统的彩色可调荧光及其强度随孵育时间的增强。QD 主要通过巨胞饮作用和其他脂质筏介导的内吞途径被细胞内化,并在 24 小时内保持高效的数量。QD 具有独特的颜色可调谐性和一致的高强度发射,使其成为开发在宽可见区域可激活的多重荧光生物纳米探针的有用工具。