Khan Zahid U, Khan Latif U, Brito Hermi F, Gidlund Magnus, Malta Oscar L, Di Mascio Paolo
Institute of Chemistry, University of Sao Paulo (USP), 05508-000 São Paulo-SP, Brazil.
Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan.
ACS Omega. 2023 Sep 11;8(38):34328-34353. doi: 10.1021/acsomega.3c03962. eCollection 2023 Sep 26.
Singlet molecular oxygen (O) has been reported in wide arrays of applications ranging from optoelectronic to photooxygenation reactions and therapy in biomedical proposals. It is also considered a major determinant of photodynamic therapy (PDT) efficacy. Since the direct excitation from the triplet ground state (O) of oxygen to the singlet excited state O is spin forbidden; therefore, a rational design and development of heterogeneous sensitizers is remarkably important for the efficient production of O. For this purpose, quantum dots (QDs) have emerged as versatile candidates either by acting individually as sensitizers for O generation or by working in conjunction with other inorganic materials or organic sensitizers by providing them a vast platform. Thus, conjoining the photophysical properties of QDs with other materials, e.g., coupling/combining with other inorganic materials, doping with the transition metal ions or lanthanide ions, and conjugation with a molecular sensitizer provide the opportunity to achieve high-efficiency quantum yields of O which is not possible with either component separately. Hence, the current review has been focused on the recent advances made in the semiconductor QDs, perovskite QDs, and transition metal dichalcogenide QD-sensitized O generation in the context of ongoing and previously published research work (over the past eight years, from 2015 to 2023).
单线态分子氧(O)已被报道广泛应用于从光电到光氧化反应以及生物医学领域的光动力治疗等众多应用中。它也被认为是光动力疗法(PDT)疗效的主要决定因素。由于氧从三重态基态(O)直接激发到单重态激发态O是自旋禁阻的;因此,合理设计和开发非均相敏化剂对于高效产生O非常重要。为此,量子点(QDs)已成为多功能候选物,既可以单独作为产生O的敏化剂,也可以通过为其他无机材料或有机敏化剂提供广阔平台,与它们协同工作。因此,将量子点的光物理性质与其他材料相结合,例如与其他无机材料耦合/结合、用过渡金属离子或镧系离子掺杂以及与分子敏化剂共轭,提供了实现O的高效量子产率的机会,而这是单独使用任何一种组分都无法实现的。因此,本综述聚焦于在过去八年(2015年至2023年)正在进行的和先前发表的研究工作背景下,半导体量子点、钙钛矿量子点和过渡金属二硫属化物量子点敏化产生O方面取得的最新进展。