Zhou Yuan, Cersonsky Rose K, Glotzer Sharon C
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109, USA.
Soft Matter. 2022 Jan 5;18(2):304-311. doi: 10.1039/d1sm01418h.
Photonic crystals, appealing for their ability to control light, are constructed from periodic regions of different dielectric constants. Yet, the structural holy grail in photonic materials, diamond, remains challenging to synthesize at the colloidal length scale. Here we explore new ways to assemble diamond using modified gyrobifastigial (mGBF) nanoparticles, a shape that resembles two anti-aligned triangular prisms. We investigate the parameter space that leads to the self-assembly of diamond, and we compare the likelihood of defects in diamond self-assembled mGBF the nanoparticle shape that is the current focus for assembling diamond, the truncated tetrahedra. We introduce a potential route for realizing mGBF particles by dimerizing triangular prisms using attractive patches, and we report the impact of this superstructure on the photonic properties.
光子晶体因其控制光的能力而备受关注,它由具有不同介电常数的周期性区域构成。然而,光子材料中的结构圣杯——金刚石,在胶体长度尺度上合成仍然具有挑战性。在这里,我们探索了使用改良双陀螺状(mGBF)纳米颗粒组装金刚石的新方法,这种形状类似于两个反向排列的三角棱柱。我们研究了导致金刚石自组装的参数空间,并比较了通过mGBF纳米颗粒自组装金刚石与目前用于组装金刚石的截顶四面体纳米颗粒形状中缺陷出现的可能性。我们介绍了一种通过使用吸引性斑块使三角棱柱二聚化来实现mGBF颗粒的潜在途径,并报告了这种超结构对光子特性的影响。