Wang Qingtong, Fang Zixi, Zhao Xinkun, Dong Changlin, Li Yao, Guo Cuiping, Liu Qinglei, Song Fang, Zhang Wang
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800# Dongchuan Rd., Shanghai 200240, People's Republic of China.
ACS Appl Mater Interfaces. 2021 Dec 22;13(50):59855-59866. doi: 10.1021/acsami.1c16811. Epub 2021 Dec 8.
Graphitic carbon nitride (g-CN) is a promising photocatalyst for CO reduction to alleviate the greenhouse effect. However, the low light absorption, small specific surface area, and rapid charge recombination limit the photocatalytic efficiency of g-CN. Herein, we demonstrate a bioinspired nanoarchitecturing strategy to significantly improve the light harvesting and charge separation of the g-CN/Au composite, as proven by the remarkable photocatalytic CO reduction. Specifically, a biotemplating approach is employed to transfer the sophisticated hierarchical structures and the related light-harvesting functionality of butterfly wings to the g-CN/Au composite. The resulting g-CN/Au composite shows high photocatalytic efficiency under UV-visible excitation with triethanolamine as the sacrificial agent. The yields of CO and CH are 331.57 and 39.71 μmol/g/h, respectively, which are ∼36 times and ∼88 times that of pure g-CN under the same conditions. Detailed experiments and the finite-difference time-domain method suggest that the superb photocatalytic activity should be ascribed to the unique periodic hierarchical structure which assists the light absorption and the localized surface plasmon resonance for promoted charge separation in addition to the more effective CO diffusion and larger specific surface area. Our work provides a new path for the design and optimization of photocatalysts based on biological structures that are usually unattainable artificially.
石墨相氮化碳(g-CN)是一种很有前景的用于将CO还原以缓解温室效应的光催化剂。然而,其低光吸收、小比表面积和快速的电荷复合限制了g-CN的光催化效率。在此,我们展示了一种受生物启发的纳米结构策略,以显著提高g-CN/Au复合材料的光捕获和电荷分离能力,这已通过显著的光催化CO还原得到证实。具体而言,采用生物模板法将蝴蝶翅膀复杂的分级结构及其相关的光捕获功能转移到g-CN/Au复合材料上。所得的g-CN/Au复合材料在以三乙醇胺为牺牲剂的紫外-可见光激发下表现出高光催化效率。CO和CH的产率分别为331.57和39.71 μmol/g/h,在相同条件下分别约为纯g-CN的36倍和约88倍。详细的实验和时域有限差分法表明,优异的光催化活性应归因于独特的周期性分级结构,除了更有效的CO扩散和更大的比表面积外,该结构有助于光吸收和局部表面等离子体共振以促进电荷分离。我们的工作为基于通常无法人工实现的生物结构的光催化剂的设计和优化提供了一条新途径。