Jiang Peng, Wang Kun, Liu Wenrui, Song Yuhang, Zheng Runtian, Chen Lihua, Su Baolian
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Laboratory of Inorganic Materials Chemistry, University of Namur, B-5000 Namur, Belgium.
Polymers (Basel). 2024 Aug 16;16(16):2317. doi: 10.3390/polym16162317.
Converting carbon dioxide (CO) into high-value-added chemicals using solar energy is a promising approach to reducing carbon dioxide emissions; however, single photocatalysts suffer from quick the recombination of photogenerated electron-hole pairs and poor photoredox ability. Herein, silver (Ag) nanoparticles featuring with localized surface plasmon resonance (LSPR) are combined with g-CN to form a Schottky junction for photothermal catalytic CO reduction. The Ag/g-CN exhibits higher photocatalytic CO reduction activity under UV-vis light; the CH and CO evolution rates are 10.44 and 88.79 µmol·h·g, respectively. Enhanced photocatalytic CO reduction performances are attributed to efficient hot electron transfer in the Ag/g-CN Schottky junction. LSPR-induced hot electrons from Ag nanoparticles improve the local reaction temperature and promote the separation and transfer of photogenerated electron-hole pairs. The charge carrier transfer route was investigated by in situ irradiated X-ray photoelectron spectroscopy (XPS). The three-dimensional finite-difference time-domain (3D-FDTD) method verified the strong electromagnetic field at the interface between Ag and g-CN. The photothermal catalytic CO reduction pathway of Ag/g-CN was investigated using in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS). This study examines hot electron transfer in the Ag/g-CN Schottky junction and provides a feasible way to design a plasmonic metal/polymer semiconductor Schottky junction for photothermal catalytic CO reduction.
利用太阳能将二氧化碳(CO₂)转化为高附加值化学品是减少二氧化碳排放的一种很有前景的方法;然而,单一光催化剂存在光生电子-空穴对快速复合以及光氧化还原能力差的问题。在此,具有局域表面等离子体共振(LSPR)特性的银(Ag)纳米颗粒与g-C₃N₄结合形成肖特基结用于光热催化CO₂还原。Ag/g-C₃N₄在紫外-可见光下表现出更高的光催化CO₂还原活性;CH₄和CO的析出速率分别为10.44和88.79 μmol·h⁻¹·g⁻¹。光催化CO₂还原性能的增强归因于Ag/g-C₃N₄肖特基结中高效的热电子转移。来自Ag纳米颗粒的LSPR诱导热电子提高了局部反应温度并促进了光生电子-空穴对的分离和转移。通过原位辐照X射线光电子能谱(XPS)研究了电荷载流子转移途径。三维时域有限差分(3D-FDTD)方法验证了Ag与g-C₃N₄界面处的强电磁场。利用原位漫反射红外傅里叶变换光谱(DRIFTS)研究了Ag/g-C₃N₄的光热催化CO₂还原途径。本研究考察了Ag/g-C₃N₄肖特基结中的热电子转移,并为设计用于光热催化CO₂还原的等离子体金属/聚合物半导体肖特基结提供了一种可行的方法。