Department of Experimental Medical Science, Lund University, Lund, Sweden.
Department of Physics, Carnegie Mellon Universitygrid.147455.6, Pittsburgh, Pennsylvania, USA.
J Virol. 2022 Feb 23;96(4):e0183121. doi: 10.1128/JVI.01831-21. Epub 2021 Dec 8.
Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: (i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize the energy of self-assembly, and (ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus 1 (HSV-1) as a prototype of human herpesviruses, we demonstrated that this mechanical capsid maturation is mainly facilitated through capsid binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with the interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggested the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. The minor capsid protein UL25 plays a critical role in the mechanical maturation of the HSV-1 capsid during virus assembly and is required for stable DNA packaging. We modulated the UL25 capsid interactions by genetically deleting different UL25 regions and quantifying the effect on mechanical capsid stability using an atomic force microscopy (AFM) nanoindentation approach. This approach revealed how UL25 regions reinforced the herpesvirus capsid to stably package and retain pressurized DNA. Our data suggest a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.
大多数病毒都经历一个从弱自组装、非感染性颗粒到稳定、感染性病毒粒子的成熟过程。对于疱疹病毒,这个成熟过程解决了几个相互冲突的要求:(i)组装必须由病毒颗粒亚基之间的弱、可逆相互作用驱动,以减少错误并最小化自组装的能量,(ii)病毒颗粒必须足够稳定,以承受来自其在衣壳中强约束的数十个大气压的 DNA 压力。以单纯疱疹病毒 1 (HSV-1) 为人类疱疹病毒的原型,我们证明了这种机械衣壳成熟主要是通过衣壳结合辅助蛋白 UL25 来促进的,所有疱疹病毒都存在 UL25 的同源物。通过对 HSV-1 的 UL25 突变体进行遗传操作,并结合原子力显微镜纳米压痕法对衣壳力学的检测,我们提出了不同 UL25 结构域与衣壳成熟和 DNA 包装相关的逐步结合的机制。这些发现展示了另一种病毒作为精巧编程的纳米机器的范例,其中机械和遗传信息之间的密切关系在 UL25 结构中得以保留。 次要衣壳蛋白 UL25 在病毒组装过程中对 HSV-1 衣壳的机械成熟起着关键作用,并且是稳定 DNA 包装所必需的。我们通过遗传删除不同的 UL25 区域来调节 UL25 衣壳相互作用,并使用原子力显微镜 (AFM) 纳米压痕方法定量测量对机械衣壳稳定性的影响。这种方法揭示了 UL25 区域如何增强疱疹病毒衣壳以稳定地包装和保留加压 DNA。我们的数据表明,两个主要 UL25 结构域的逐步结合与 DNA 包装同步的机制。