El Bilali Nabil, Khadivjam Bita, Bonneil Eric, Thibault Pierre, Lippé Roger
Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada H3T 1C5.
Centre de recherche du CHU Sainte-Justine, 3175 chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada H3T 1C5.
J Virol. 2021 Feb 15;95(4). doi: 10.1128/JVI.01842-19. Epub 2020 Nov 25.
Herpes simplex virus replicates in the nucleus, where new capsids are assembled. It produces procapsids devoid of nucleic acid but containing the preVP22a scaffold protein. These thermo-unstable particles then mature into A-, B- or C-nuclear icosahedral capsids, depending on their ability to shed the proteolytically processed scaffold and incorporation of the viral genome. To study how these viral capsids differ, we performed proteomics studies of highly enriched HSV-1 A-, B- and C-nuclear capsids, relying in part on a novel and powerful flow virometry approach to purify C-capsids. We found that the viral particles contained the expected capsid components and identified several tegument proteins in the C-capsid fraction (pU21, pU36, pU46, pU48, pU49, pU50, pU51 and pU10). Moreover, numerous ribosomal, hnRNPs and other host proteins, absent from the uninfected controls, were detected on the capsids with some of them seemingly specific to C-capsids (glycogen synthase, four different keratin-related proteins, fibronectin 1 and PCBP1). A subsequent proteomics analysis was performed to rule out the presence of protein complexes that may share similar density as the viral capsids but do not otherwise interact with them. Using pUL25 or VP5 mutant viruses incapable of assembling C-nuclear or all nuclear capsids, respectively, we confirmed the bulk of our initial findings. Naturally, it will next be important to address the functional relevance of these proteins. Much is known about the biology of herpesviruses. This includes their unique ability to traverse the two nuclear envelopes by sequential budding and fusion steps. For HSV-1, this implies the pU31/pU34 and pU17/pU25 complexes that may favor C-capsid egress. However, this selection process is not clear, nor are all the differences that distinguish A-, B- and C-capsids. The present study probes what proteins compose these capsids, including host proteins. This should open up new research avenues to clarify the biology of this most interesting family of viruses. It also reiterates the use of flow virometry as an innovative tool to purify viral particles.
单纯疱疹病毒在细胞核中复制,新的衣壳在细胞核中组装。它产生不含核酸但含有前VP22a支架蛋白的原衣壳。这些热不稳定颗粒随后根据其去除经蛋白水解处理的支架和整合病毒基因组的能力,成熟为A、B或C型核二十面体衣壳。为了研究这些病毒衣壳的差异,我们对高度富集的HSV-1 A、B和C型核衣壳进行了蛋白质组学研究,部分依赖于一种新颖且强大的流式病毒测量方法来纯化C型衣壳。我们发现病毒颗粒包含预期的衣壳成分,并在C型衣壳组分中鉴定出几种被膜蛋白(pU21、pU36、pU46、pU48、pU49、pU50、pU51和pU10)。此外,在衣壳上检测到许多在未感染对照中不存在的核糖体、hnRNP和其他宿主蛋白,其中一些似乎是C型衣壳特有的(糖原合酶、四种不同的角蛋白相关蛋白、纤连蛋白1和PCBP1)。随后进行了蛋白质组学分析,以排除可能与病毒衣壳密度相似但不以其他方式与其相互作用的蛋白质复合物的存在。使用分别无法组装C型核衣壳或所有核衣壳的pUL25或VP5突变病毒,我们证实了最初的大部分发现。自然地,接下来重要的是研究这些蛋白质的功能相关性。人们对疱疹病毒的生物学了解很多。这包括它们通过连续出芽和融合步骤穿越两层核膜的独特能力。对于HSV-1来说,这意味着pU31/pU34和pU17/pU25复合物可能有利于C型衣壳的排出。然而,这个选择过程尚不清楚,区分A、B和C型衣壳的所有差异也不清楚。本研究探究了构成这些衣壳的蛋白质,包括宿主蛋白。这应该会开辟新的研究途径,以阐明这个最有趣的病毒家族的生物学特性。它还重申了流式病毒测量作为纯化病毒颗粒的创新工具的用途。