Selim Khaled A, Haffner Michael, Burkhardt Markus, Mantovani Oliver, Neumann Niels, Albrecht Reinhard, Seifert Roland, Krüger Larissa, Stülke Jörg, Hartmann Marcus D, Hagemann Martin, Forchhammer Karl
Organismic Interactions Department, Interfaculty Institute for Microbiology and Infection Medicine, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
Sci Adv. 2021 Dec 10;7(50):eabk0568. doi: 10.1126/sciadv.abk0568. Epub 2021 Dec 8.
Because of their photosynthesis-dependent lifestyle, cyanobacteria evolved sophisticated regulatory mechanisms to adapt to oscillating day-night metabolic changes. How they coordinate the metabolic switch between autotrophic and glycogen-catabolic metabolism in light and darkness is poorly understood. Recently, c-di-AMP has been implicated in diurnal regulation, but its mode of action remains elusive. To unravel the signaling functions of c-di-AMP in cyanobacteria, we isolated c-di-AMP receptor proteins. Thereby, the carbon-sensor protein SbtB was identified as a major c-di-AMP receptor, which we confirmed biochemically and by x-ray crystallography. In search for the c-di-AMP signaling function of SbtB, we found that both SbtB and c-di-AMP cyclase–deficient mutants showed reduced diurnal growth and that c-di-AMP–bound SbtB interacts specifically with the glycogen-branching enzyme GlgB. Accordingly, both mutants displayed impaired glycogen synthesis during the day and impaired nighttime survival. Thus, the pivotal role of c-di-AMP in day-night acclimation can be attributed to SbtB-mediated regulation of glycogen metabolism.
由于其依赖光合作用的生活方式,蓝细菌进化出了复杂的调节机制以适应昼夜代谢的振荡变化。它们如何在光照和黑暗条件下协调自养代谢和糖原分解代谢之间的代谢转换,目前还知之甚少。最近,环二腺苷酸(c-di-AMP)被认为参与了昼夜调节,但其作用方式仍不清楚。为了阐明c-di-AMP在蓝细菌中的信号功能,我们分离了c-di-AMP受体蛋白。由此,碳传感器蛋白SbtB被鉴定为主要的c-di-AMP受体,我们通过生化方法和X射线晶体学对此进行了证实。在寻找SbtB的c-di-AMP信号功能时,我们发现SbtB和缺乏c-di-AMP环化酶的突变体的昼夜生长均减缓,且结合了c-di-AMP的SbtB与糖原分支酶GlgB特异性相互作用。因此,这两种突变体在白天的糖原合成均受损,夜间存活也受到影响。因此,c-di-AMP在昼夜适应中的关键作用可归因于SbtB介导的糖原代谢调节。