Suppr超能文献

用于建立随机反应网络长期行为的可扩展计算框架。

A scalable computational framework for establishing long-term behavior of stochastic reaction networks.

机构信息

Department of Biosystems Science and Engineering (D-BSSE), Swiss Federal Institute of Technology-Zürich (ETH-Z), Basel, Switzerland.

出版信息

PLoS Comput Biol. 2014 Jun 26;10(6):e1003669. doi: 10.1371/journal.pcbi.1003669. eCollection 2014 Jun.

Abstract

Reaction networks are systems in which the populations of a finite number of species evolve through predefined interactions. Such networks are found as modeling tools in many biological disciplines such as biochemistry, ecology, epidemiology, immunology, systems biology and synthetic biology. It is now well-established that, for small population sizes, stochastic models for biochemical reaction networks are necessary to capture randomness in the interactions. The tools for analyzing such models, however, still lag far behind their deterministic counterparts. In this paper, we bridge this gap by developing a constructive framework for examining the long-term behavior and stability properties of the reaction dynamics in a stochastic setting. In particular, we address the problems of determining ergodicity of the reaction dynamics, which is analogous to having a globally attracting fixed point for deterministic dynamics. We also examine when the statistical moments of the underlying process remain bounded with time and when they converge to their steady state values. The framework we develop relies on a blend of ideas from probability theory, linear algebra and optimization theory. We demonstrate that the stability properties of a wide class of biological networks can be assessed from our sufficient theoretical conditions that can be recast as efficient and scalable linear programs, well-known for their tractability. It is notably shown that the computational complexity is often linear in the number of species. We illustrate the validity, the efficiency and the wide applicability of our results on several reaction networks arising in biochemistry, systems biology, epidemiology and ecology. The biological implications of the results as well as an example of a non-ergodic biological network are also discussed.

摘要

反应网络是指在有限数量的物种中,其种群通过预定义的相互作用进行演化的系统。这样的网络被用作许多生物学领域的建模工具,例如生物化学、生态学、流行病学、免疫学、系统生物学和合成生物学。现在已经确立,对于小种群大小,需要使用随机生化反应网络模型来捕捉相互作用中的随机性。然而,分析这些模型的工具仍然远远落后于它们的确定性对应物。在本文中,我们通过开发一个建设性的框架来弥合这一差距,以研究随机环境下反应动力学的长期行为和稳定性特性。特别是,我们解决了确定反应动力学的遍历性的问题,这类似于具有确定性动力学的全局吸引固定点。我们还研究了基础过程的统计矩随时间保持有界的情况,以及它们何时收敛到其稳态值。我们开发的框架依赖于概率论、线性代数和优化理论的思想融合。我们证明,从我们的充分理论条件可以评估广泛的生物网络的稳定性特性,这些条件可以被重新表述为有效的和可扩展的线性规划,它们以可处理性而闻名。值得注意的是,计算复杂度通常在线性数量的物种。我们在生物化学、系统生物学、流行病学和生态学中出现的几个反应网络上展示了我们的结果的有效性、效率和广泛适用性。还讨论了结果的生物学意义以及非遍历生物网络的示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b931/4072526/ad3c417a565a/pcbi.1003669.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验