Department of Biosystems Science and Engineering, ETH Zurich, CH-4056, Basel, Switzerland.
Nat Commun. 2024 Jun 8;15(1):4911. doi: 10.1038/s41467-024-49177-1.
Central to analyzing noisy gene expression systems is solving the Chemical Master Equation (CME), which characterizes the probability evolution of the reacting species' copy numbers. Solving CMEs for high-dimensional systems suffers from the curse of dimensionality. Here, we propose a computational method for improved scalability through a divide-and-conquer strategy that optimally decomposes the whole system into a leader system and several conditionally independent follower subsystems. The CME is solved by combining Monte Carlo estimation for the leader system with stochastic filtering procedures for the follower subsystems. We demonstrate this method with high-dimensional numerical examples and apply it to identify a yeast transcription system at the single-cell resolution, leveraging mRNA time-course experimental data. The identification results enable an accurate examination of the heterogeneity in rate parameters among isogenic cells. To validate this result, we develop a noise decomposition technique exploiting time-course data but requiring no supplementary components, e.g., dual-reporters.
分析噪声基因表达系统的核心是解决化学主方程(CME),该方程描述了反应物种拷贝数的概率演化。对于高维系统,CME 的求解受到维数灾难的困扰。在这里,我们提出了一种通过分而治之策略来提高可扩展性的计算方法,该策略通过最优地将整个系统分解为一个领导者系统和几个条件独立的跟随者子系统来实现。通过结合领导者系统的蒙特卡罗估计和跟随者子系统的随机滤波过程来求解 CME。我们通过高维数值示例展示了这种方法,并将其应用于在单细胞分辨率下鉴定酵母转录系统,利用 mRNA 时程实验数据。鉴定结果能够准确检查同基因细胞中速率参数的异质性。为了验证这一结果,我们开发了一种噪声分解技术,该技术利用时程数据,但不需要额外的组件,例如双报告基因。