Computational Story Lab, Vermont Complex Systems Center, MassMutual Center of Excellence for Complex Systems and Data Science, Vermont Advanced Computing Core, University of Vermont, Burlington, VT, United States of America.
Department of Computer Science, University of Vermont, Burlington, VT, United States of America.
PLoS One. 2021 Dec 8;16(12):e0260592. doi: 10.1371/journal.pone.0260592. eCollection 2021.
Measuring the specific kind, temporal ordering, diversity, and turnover rate of stories surrounding any given subject is essential to developing a complete reckoning of that subject's historical impact. Here, we use Twitter as a distributed news and opinion aggregation source to identify and track the dynamics of the dominant day-scale stories around Donald Trump, the 45th President of the United States. Working with a data set comprising around 20 billion 1-grams, we first compare each day's 1-gram and 2-gram usage frequencies to those of a year before, to create day- and week-scale timelines for Trump stories for 2016-2021. We measure Trump's narrative control, the extent to which stories have been about Trump or put forward by Trump. We then quantify story turbulence and collective chronopathy-the rate at which a population's stories for a subject seem to change over time. We show that 2017 was the most turbulent overall year for Trump. In 2020, story generation slowed dramatically during the first two major waves of the COVID-19 pandemic, with rapid turnover returning first with the Black Lives Matter protests following George Floyd's murder and then later by events leading up to and following the 2020 US presidential election, including the storming of the US Capitol six days into 2021. Trump story turnover for 2 months during the COVID-19 pandemic was on par with that of 3 days in September 2017. Our methods may be applied to any well-discussed phenomenon, and have potential to enable the computational aspects of journalism, history, and biography.
衡量围绕特定主题的故事的具体类型、时间顺序、多样性和更替率,对于全面了解该主题的历史影响至关重要。在这里,我们利用 Twitter 作为分布式新闻和观点聚合源,来识别和跟踪与美国第 45 任总统唐纳德·特朗普相关的主导日尺度故事的动态。我们使用一个由大约 200 亿个 1 克组成的数据集,首先将每天的 1 克和 2 克使用频率与前一年的进行比较,为 2016 年至 2021 年的特朗普故事创建日和周尺度时间线。我们衡量特朗普的叙事控制,即故事是关于特朗普的程度或由特朗普提出的程度。然后,我们量化了故事动荡和集体时变——即一个群体的关于一个主题的故事随时间变化的速度。我们表明,2017 年是特朗普整体最动荡的一年。在 2020 年,随着 COVID-19 大流行的前两次主要浪潮,故事生成速度大幅放缓,而在乔治·弗洛伊德被谋杀后爆发的“黑人的命也是命”抗议活动和随后的 2020 年美国总统选举前的事件导致故事更替速度加快,包括 2021 年 1 月 6 日美国国会大厦被冲击。在 COVID-19 大流行期间,特朗普故事的更替速度与 2017 年 9 月 3 天的更替速度相当。我们的方法可应用于任何广受讨论的现象,并有可能实现新闻、历史和传记的计算方面。