Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America.
Department of Internal Medicine, Statistics, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America.
PLoS One. 2021 Dec 8;16(12):e0261049. doi: 10.1371/journal.pone.0261049. eCollection 2021.
Determine effective preloading timepoints for D-methionine (D-met) otoprotection from steady state or impulse noise and impact on cochlear and serum antioxidant measures.
D-met started 2.0-, 2.5-, 3.0-, or 3.5- days before steady-state or impulse noise exposure with saline controls. Auditory brainstem response (ABRs) measured from 2 to 20 kHz at baseline and 21 days post-noise. Samples were then collected for serum (SOD, CAT, GR, GPx) and cochlear (GSH, GSSG) antioxidant levels.
Ten Chinchillas per group.
Preloading D-met significantly reduced ABR threshold shifts for both impulse and steady state noise exposures but with different optimal starting time points and with differences in antioxidant measures. For impulse noise exposure, the 2.0, 2.5, and 3.0 day preloading start provide significant threshold shift protection at all frequencies. Compared to the saline controls, serum GR for the 3.0 and 3.5 day preloading groups was significantly increased at 21 days with no significant increase in SOD, CAT or GPx for any impulse preloading time point. Cochlear GSH, GSSG, and GSH/GSSG ratio were not significantly different from saline controls at 21 days post noise exposure. For steady state noise exposure, significant threshold shift protection occurred at all frequencies for the 3.5, 3.0 and 2.5 day preloading start times but protection only occurred at 3 of the 6 test frequencies for the 2.0 day preloading start point. Compared to the saline controls, preloaded D-met steady-state noise groups demonstrated significantly higher serum SOD for the 2.5-3.5 day starting time points and GPx for the 2.5 day starting time but no significant increase in GR or CAT for any preloading time point. Compared to saline controls, D-met significantly increased cochlear GSH concentrations in the 2 and 2.5 day steady-state noise exposed groups but no significant differences in GSSG or the GSH/GSSG ratio were noted for any steady state noise-exposed group.
The optimal D-met preloading starting time window is earlier for steady state (3.5-2.5 days) than impulse noise (3.0-2.0). At 21 days post impulse noise, D-met increased serum GR for 2 preloading time points but not SOD, CAT, or GpX and not cochlear GSH, GSSG or the GSH/GSSG ratio. At 21 days post steady state noise D-met increased serum SOD and GPx at select preloading time points but not CAT or GR. However D-met did increase the cochlear GSH at select preloading time points but not GSSG or the GSH/GSSG ratio.
确定 D-蛋氨酸(D-met)从稳态或脉冲噪声中进行有效预加载的时间点及其对耳蜗和血清抗氧化措施的影响。
D-met 在稳态或脉冲噪声暴露前 2.0、2.5、3.0 或 3.5 天开始,并用生理盐水对照。在基线和噪声后 21 天,从 2 至 20 kHz 测量听觉脑干反应(ABR)。然后收集血清(SOD、CAT、GR、GPx)和耳蜗(GSH、GSSG)抗氧化水平的样本。
每组 10 只龙猫。
D-met 预加载可显著降低脉冲和稳态噪声暴露的 ABR 阈值移位,但最佳起始时间点不同,且抗氧化措施也不同。对于脉冲噪声暴露,2.0、2.5 和 3.0 天的预加载起始提供了所有频率的显著阈值移位保护。与生理盐水对照组相比,3.0 和 3.5 天预加载组的血清 GR 在 21 天时显著增加,而任何脉冲预加载时间点的 SOD、CAT 或 GPx 均无显著增加。在噪声暴露后 21 天,耳蜗 GSH、GSSG 和 GSH/GSSG 比值与生理盐水对照组无显著差异。对于稳态噪声暴露,3.5、3.0 和 2.5 天的预加载起始时间均发生了所有频率的显著阈值移位保护,但 2.0 天的预加载起始时间仅在 6 个测试频率中的 3 个发生了保护。与生理盐水对照组相比,预加载 D-met 的稳态噪声组在 2.5-3.5 天的起始时间点的血清 SOD 和 2.5 天的起始时间点的 GPx 显著升高,但任何预加载时间点的 GR 或 CAT 均无显著增加。与生理盐水对照组相比,D-met 显著增加了 2 天和 2.5 天稳态噪声暴露组的耳蜗 GSH 浓度,但任何稳态噪声暴露组的 GSSG 或 GSH/GSSG 比值均无显著差异。
与脉冲噪声(3.0-2.0 天)相比,稳态噪声(3.5-2.5 天)的最佳 D-met 预加载起始时间窗口更早。在脉冲噪声后 21 天,D-met 增加了 2 个预加载时间点的血清 GR,但未增加 SOD、CAT 或 GpX,也未增加耳蜗 GSH、GSSG 或 GSH/GSSG 比值。在稳态噪声后 21 天,D-met 在选择的预加载时间点增加了血清 SOD 和 GPx,但未增加 CAT 或 GR。然而,D-met 确实在选择的预加载时间点增加了耳蜗 GSH,但未增加 GSSG 或 GSH/GSSG 比值。