Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France.
Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK.
Dev Cell. 2021 Dec 20;56(24):3393-3404.e7. doi: 10.1016/j.devcel.2021.11.016. Epub 2021 Dec 7.
Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.
解析基因功能需要能够在空间和时间上控制基因表达。二元系统,如 Gal4/UAS,提供了一种强大的调节基因表达和诱导功能丧失或获得的方法。在果蝇中,Gal4/UAS 系统就是一个很好的例子,它在发现发育、生理、神经生物学和新陈代谢等方面的保守机制方面至关重要,仅举几例。在这里,我们描述了一种基于 Magnet 光开关的转基因光诱导 Gal4/UAS 系统 (ShineGal4/UAS)。我们表明,它可以在果蝇的不同组织和不同发育阶段高效、快速和稳健地激活 UAS 驱动的转基因。此外,我们说明了 ShineGal4 如何在动物、器官和细胞水平上产生功能获得和功能丧失的表型。由于大量的 UAS 驱动的转基因,ShineGal4 通过允许在体内以高时空分辨率控制基因表达,丰富了果蝇的遗传工具包。