Kunuku Srinivasu, Ficek Mateusz, Wieloszynska Aleksandra, Tamulewicz-Szwajkowska Magdalena, Gajewski Krzysztof, Sawczak Miroslaw, Lewkowicz Aneta, Ryl Jacek, Gotszalk Tedor, Bogdanowicz Robert
Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233, Gdańsk, Poland.
Department of Nanometrology, Wrocław University of Science and Technology, Janiszewskiego 11/17 St., 50-372, Wrocław, Poland.
Nanotechnology. 2021 Dec 28;33(12). doi: 10.1088/1361-6528/ac4130.
Boron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been synthesized on single crystalline diamond (SCD) IIa and SCD Ib substrates in a microwave plasma-assisted chemical vapor deposition process. The B/N co-doping into CVD diamond has been conducted at constant N flow of N/C ∼ 0.02 with three different B/C doping concentrations of B/C ∼ 2500 ppm, 5000 ppm, 7500 ppm. Atomic force microscopy topography depicted the flat and smooth surface with low surface roughness for low B doping, whereas surface features like hillock structures and un-epitaxial diamond crystals with high surface roughness were observed for high B doping concentrations. KPFM measurements revealed that the work function (4.74-4.94 eV) has not varied significantly for CVD diamond synthesized with different B/C concentrations. Raman spectroscopy measurements described the growth of high-quality diamond and photoluminescence studies revealed the formation of high-density nitrogen-vacancy centers in CVD diamond layers. X-ray photoelectron spectroscopy results confirmed the successful B doping and the increase in N doping with B doping concentration. The room temperature electrical resistance measurements of CVD diamond layers (B/C ∼ 7500 ppm) have shown the low resistance value ∼9.29 Ω for CVD diamond/SCD IIa, and the resistance value ∼16.55 Ω for CVD diamond/SCD Ib samples.
硼掺杂金刚石(BDD)在电学和电化学传感应用中具有巨大潜力。生长参数、衬底和合成方法在制备从半导体BDD到金属BDD的过程中起着至关重要的作用。将硼(B)与其他元素一起掺杂到金刚石中,证明了B掺杂的效果得到改善且具有优异性能。在本研究中,通过微波等离子体辅助化学气相沉积工艺,在单晶金刚石(SCD)IIa和SCD Ib衬底上合成了B和氮(N)共掺杂金刚石。在N/C ∼ 0.02的恒定N流量下,以三种不同的B/C掺杂浓度B/C ∼ 2500 ppm、5000 ppm、7500 ppm进行了CVD金刚石中的B/N共掺杂。原子力显微镜形貌显示,低B掺杂时表面平坦光滑,表面粗糙度低,而高B掺杂浓度时观察到有小丘结构和高表面粗糙度的非外延金刚石晶体等表面特征。KPFM测量表明,不同B/C浓度合成的CVD金刚石的功函数(4.74 - 4.94 eV)没有显著变化。拉曼光谱测量描述了高质量金刚石的生长,光致发光研究揭示了CVD金刚石层中高密度氮空位中心的形成。X射线光电子能谱结果证实了成功的B掺杂以及随着B掺杂浓度增加N掺杂量也增加。CVD金刚石层(B/C ∼ 7500 ppm)的室温电阻测量表明,CVD金刚石/SCD IIa的电阻值约为9.29 Ω,CVD金刚石/SCD Ib样品的电阻值约为16.55 Ω。