University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany.
International Max Planck Research School for Neuroscience, Göttingen, Germany.
Nat Commun. 2021 Dec 8;12(1):7129. doi: 10.1038/s41467-021-27462-7.
The brain extracellular matrix (ECM) consists of extremely long-lived proteins that assemble around neurons and synapses, to stabilize them. The ECM is thought to change only rarely, in relation to neuronal plasticity, through ECM proteolysis and renewed protein synthesis. We report here an alternative ECM remodeling mechanism, based on the recycling of ECM molecules. Using multiple ECM labeling and imaging assays, from super-resolution optical imaging to nanoscale secondary ion mass spectrometry, both in culture and in brain slices, we find that a key ECM protein, Tenascin-R, is frequently endocytosed, and later resurfaces, preferentially near synapses. The TNR molecules complete this cycle within ~3 days, in an activity-dependent fashion. Interfering with the recycling process perturbs severely neuronal function, strongly reducing synaptic vesicle exo- and endocytosis. We conclude that the neuronal ECM can be remodeled frequently through mechanisms that involve endocytosis and recycling of ECM proteins.
脑细胞外基质(ECM)由极为长寿的蛋白质组成,这些蛋白质围绕神经元和突触组装,以稳定它们。人们认为,与神经元可塑性相关的 ECM 只有通过 ECM 蛋白水解和新的蛋白质合成才能很少改变。我们在这里报告了一种基于 ECM 分子循环利用的替代 ECM 重塑机制。使用多种 ECM 标记和成像测定法,从超分辨率光学成像到纳米级二次离子质谱,无论是在培养物还是在脑片中,我们发现一种关键的 ECM 蛋白,即 tenascin-R,经常被内吞,然后重新出现,优先出现在突触附近。TNR 分子以活动依赖的方式在大约 3 天内完成这个循环。干扰循环过程会严重扰乱神经元功能,强烈减少突触小泡的胞吐和胞吞作用。我们得出结论,神经元 ECM 可以通过涉及 ECM 蛋白内吞和循环的机制频繁重塑。