Suppr超能文献

儿科心脏移植中风险评分模型的外部验证和比较。

External validation and comparison of risk score models in pediatric heart transplants.

机构信息

Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.

Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.

出版信息

Pediatr Transplant. 2022 May;26(3):e14204. doi: 10.1111/petr.14204. Epub 2021 Dec 8.

Abstract

BACKGROUND

Pediatric heart transplant (PHT) patients have the highest waitlist mortality of solid organ transplants, yet more than 40% of viable hearts are unutilized. A tool for risk prediction could impact these outcomes. This study aimed to compare and validate the PHT risk score models (RSMs) in the literature.

METHODS

The literature was reviewed to identify RSMs published. The United Network for Organ Sharing (UNOS) registry was used to validate the published models identified in a pediatric cohort (<18 years) transplanted between 2017 and 2019 and compared against the Scientific Registry of Transplant Recipients (SRTR) 2021 model. Primary outcome was post-transplant 1-year mortality. Odds ratios were obtained to evaluate the association between risk score groups and 1-year mortality. Area under the curve (AUC) was used to compare the RSM scores on their goodness-of-fit, using Delong's test.

RESULTS

Six recipient and one donor RSMs published between 2008 and 2021 were included in the analysis. The validation cohort included 1,003 PHT. Low-risk groups had a significantly better survival than high-risk groups as predicted by Choudhry (OR = 4.59, 95% CI [2.36-8.93]) and Fraser III (3.17 [1.43-7.05]) models. Choudhry's and SRTR models achieved the best overall performance (AUC = 0.69 and 0.68, respectively). When adjusted for CHD and ventricular assist device support, all models reported better predictability [AUC > 0.6]. Choudhry (AUC = 0.69) and SRTR (AUC = 0.71) remained the best predicting RSMs even after adjustment.

CONCLUSION

Although the RSMs by SRTR and Choudhry provided the best prediction for 1-year mortality, none demonstrated a strong (AUC ≥ 0.8) concordance statistic. All published studies lacked advanced analytical approaches and were derived from an inherently limited dataset.

摘要

背景

儿科心脏移植(PHT)患者的实体器官移植候补者死亡率最高,但超过 40%的可用心脏未被利用。风险预测工具可能会影响这些结果。本研究旨在比较和验证文献中已发表的 PHT 风险评分模型(RSM)。

方法

对已发表的 RSM 进行文献回顾。利用美国器官共享网络(UNOS)注册数据,验证了 2017 年至 2019 年期间移植的小儿队列(<18 岁)中确定的已发表模型,并与 2021 年 Scientific Registry of Transplant Recipients(SRTR)模型进行了比较。主要结局是移植后 1 年死亡率。使用比值比(OR)评估风险评分组与 1 年死亡率之间的关系。使用 Delong 检验,通过曲线下面积(AUC)比较 RSM 评分的拟合优度。

结果

纳入分析的包括 2008 年至 2021 年发表的 6 项受体和 1 项供体 RSM。验证队列包括 1003 例 PHT。低危组的生存率明显优于高危组,这与 Choudhry(OR=4.59,95%CI [2.36-8.93])和 Fraser III 模型预测的结果一致。Choudhry 和 SRTR 模型的整体性能最佳(AUC 分别为 0.69 和 0.68)。当调整 CHD 和心室辅助装置支持后,所有模型的预测能力均提高(AUC>0.6)。调整后,Choudhry(AUC=0.69)和 SRTR(AUC=0.71)仍然是预测效果最好的 RSM。

结论

尽管 SRTR 和 Choudhry 的 RSM 对 1 年死亡率的预测效果最好,但均未显示出较强的(AUC≥0.8)一致性统计。所有已发表的研究均缺乏先进的分析方法,且数据来源有限。

相似文献

1
External validation and comparison of risk score models in pediatric heart transplants.
Pediatr Transplant. 2022 May;26(3):e14204. doi: 10.1111/petr.14204. Epub 2021 Dec 8.
3
Interaction of older donor age and survival after weight-matched pediatric heart transplantation.
J Heart Lung Transplant. 2017 May;36(5):554-558. doi: 10.1016/j.healun.2016.11.009. Epub 2016 Dec 1.
4
A Recipient Risk Prediction Tool for Short-term Mortality After Pediatric Heart Transplantation.
Transplantation. 2019 Nov;103(11):2434-2439. doi: 10.1097/TP.0000000000002679.
7
Impact of using higher-risk donor hearts for candidates with pre-transplant mechanical circulatory support.
J Heart Lung Transplant. 2022 Feb;41(2):237-243. doi: 10.1016/j.healun.2021.09.016. Epub 2021 Oct 22.
8
Impact of "increased-risk" donor hearts on transplant outcomes: A propensity-matched analysis.
J Thorac Cardiovasc Surg. 2019 Feb;157(2):603-610. doi: 10.1016/j.jtcvs.2018.08.120. Epub 2018 Oct 19.
10
Pediatric heart transplant waiting list mortality in the era of ventricular assist devices.
J Heart Lung Transplant. 2015 Jan;34(1):82-88. doi: 10.1016/j.healun.2014.09.018. Epub 2014 Oct 14.

引用本文的文献

1
Survival machine learning methods for mortality prediction after heart transplantation in the contemporary era.
PLoS One. 2025 Jan 7;20(1):e0313600. doi: 10.1371/journal.pone.0313600. eCollection 2025.

本文引用的文献

3
Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review.
Hepatology. 2020 Mar;71(3):1093-1105. doi: 10.1002/hep.31103. Epub 2020 Mar 6.
4
OPTN/SRTR 2018 Annual Data Report: Heart.
Am J Transplant. 2020 Jan;20 Suppl s1:340-426. doi: 10.1111/ajt.15676.
5
Pondering Higher-Risk Pediatric Heart Donors: Can We Use More?
Ann Thorac Surg. 2020 Jul;110(1):198-205. doi: 10.1016/j.athoracsur.2019.09.069. Epub 2019 Nov 14.
8
A Recipient Risk Prediction Tool for Short-term Mortality After Pediatric Heart Transplantation.
Transplantation. 2019 Nov;103(11):2434-2439. doi: 10.1097/TP.0000000000002679.
9
Using machine learning and an ensemble of methods to predict kidney transplant survival.
PLoS One. 2019 Jan 9;14(1):e0209068. doi: 10.1371/journal.pone.0209068. eCollection 2019.
10
The Number of Refusals for Donor Organ Quality Does Not Impact Heart Transplant Outcomes in Children.
Ann Thorac Surg. 2018 Apr;105(4):1223-1230. doi: 10.1016/j.athoracsur.2017.10.006. Epub 2017 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验