The Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio.
Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio.
Am J Transplant. 2019 Jul;19(7):2067-2076. doi: 10.1111/ajt.15265. Epub 2019 Feb 13.
The prelisting variables essential for creating an accurate heart transplant allocation score based on survival are unknown. To identify these we studied mortality of adults on the active heart transplant waiting list in the Scientific Registry of Transplant Recipients database from January 1, 2004 to August 31, 2015. There were 33 069 candidates awaiting heart transplantation: 7681 UNOS Status 1A, 13 027 Status 1B, and 12 361 Status 2. During a median waitlist follow-up of 4.3 months, 5514 candidates died. Variables of importance for waitlist mortality were identified by machine learning using Random Survival Forests. Strong correlates predicting survival were estimated glomerular filtration rate (eGFR), serum albumin, extracorporeal membrane oxygenation, ventricular assist device, mechanical ventilation, peak oxygen capacity, hemodynamics, inotrope support, and type of heart disease with less predictive variables including antiarrhythmic agents, history of stroke, vascular disease, prior malignancy, and prior tobacco use. Complex interactions were identified such as an additive risk in mortality based on renal function and serum albumin, and sex-differences in mortality when eGFR >40 mL/min/1.73 m. Most predictive variables for waitlist mortality are in the current tiered allocation system except for eGFR and serum albumin which have an additive risk and complex interactions.
创建基于生存的准确心脏移植分配评分所需的前置变量尚不清楚。为了确定这些变量,我们研究了 2004 年 1 月 1 日至 2015 年 8 月 31 日,在 Scientific Registry of Transplant Recipients 数据库中活跃等待心脏移植的成人的死亡率。有 33069 名候选者等待心脏移植:7681 名 UNOS 1A 状态,13027 名 1B 状态,12361 名 2 状态。在中位等待名单随访 4.3 个月期间,有 5514 名候选者死亡。使用随机生存森林(Random Survival Forests)通过机器学习识别对等待名单死亡率重要的变量。估计肾小球滤过率(eGFR)、血清白蛋白、体外膜氧合、心室辅助装置、机械通气、峰值氧容量、血液动力学、正性肌力药物支持以及心脏病类型等与生存密切相关的变量被预测。预测变量包括抗心律失常药物、中风史、血管疾病、既往恶性肿瘤和既往吸烟史等,这些变量的预测能力较低。还确定了复杂的相互作用,例如肾功能和血清白蛋白的联合风险,以及 eGFR >40mL/min/1.73m 时的性别差异。除了 eGFR 和血清白蛋白具有附加风险和复杂的相互作用外,等待名单死亡率的大多数预测变量都在当前的分层分配系统中。