Suppr超能文献

当代心脏移植术后死亡率预测的生存机器学习方法

Survival machine learning methods for mortality prediction after heart transplantation in the contemporary era.

作者信息

Liou Lathan, Mostofsky Elizabeth, Lehman Laura, Salia Soziema, Barrera Francisco J, Wei Ying, Cheema Amal, Lala Anuradha, Beam Andrew, Mittleman Murray A

机构信息

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America.

Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America.

出版信息

PLoS One. 2025 Jan 7;20(1):e0313600. doi: 10.1371/journal.pone.0313600. eCollection 2025.

Abstract

Although prediction models for heart transplantation outcomes have been developed previously, a comprehensive benchmarking of survival machine learning methods for mortality prognosis in the most contemporary era of heart transplants following the 2018 donor heart allocation policy change is warranted. This study assessed seven statistical and machine learning algorithms-Lasso, Ridge, Elastic Net, Cox Gradient Boost, Extreme Gradient Boost Linear, Extreme Gradient Boost Tree, and Random Survival Forests in a post-policy cohort of 7,160 adult heart-only transplant recipients in the Scientific Registry of Transplant Recipients (SRTR) database who received their first transplant on or after October 18, 2018. A cross-validation framework was designed in mlr. Model performance was also compared in a seasonally-matched pre-policy cohort. In the post-policy cohort, Random Survival Forests and Cox Gradient Boost had the highest performances with C-indices of 0.628 and 0.627. The relative importance of some predictive variables differed between the pre-policy and post-policy cohorts, such as the absence of ECMO in the post-policy cohort. Survival machine learning models provide reasonable prediction of 1-year posttransplant mortality outcomes and continual updating of prediction models is warranted in the contemporary era.

摘要

尽管此前已开发出心脏移植结果预测模型,但在2018年供体心脏分配政策改变后的最当代心脏移植时代,对用于死亡率预后的生存机器学习方法进行全面基准测试是有必要的。本研究在移植受者科学注册系统(SRTR)数据库中,对7160名在2018年10月18日或之后接受首次单纯心脏移植的成年受者的政策后队列中,评估了七种统计和机器学习算法——套索回归、岭回归、弹性网络、Cox梯度提升、极端梯度提升线性模型、极端梯度提升树模型和随机生存森林模型。在mlr中设计了一个交叉验证框架。还在季节性匹配的政策前队列中比较了模型性能。在政策后队列中,随机生存森林模型和Cox梯度提升模型表现最佳,C指数分别为0.628和0.627。政策前和政策后队列中一些预测变量的相对重要性有所不同,例如政策后队列中体外膜肺氧合的缺失情况。生存机器学习模型为移植后1年死亡率结果提供了合理预测,在当代,预测模型的持续更新是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5696/11706460/538dc48417fc/pone.0313600.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验