Grönquist Peter, Yao Chengyuan, Ben-Nun Tal, Dryden Nikoli, Dueben Peter, Li Shigang, Hoefler Torsten
ETH Zurich, 8092 Zürich, Switzerland.
ECMWF, Reading RG2 9AX, UK.
Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200092. doi: 10.1098/rsta.2020.0092. Epub 2021 Feb 15.
Quantifying uncertainty in weather forecasts is critical, especially for predicting extreme weather events. This is typically accomplished with ensemble prediction systems, which consist of many perturbed numerical weather simulations, or trajectories, run in parallel. These systems are associated with a high computational cost and often involve statistical post-processing steps to inexpensively improve their raw prediction qualities. We propose a mixed model that uses only a subset of the original weather trajectories combined with a post-processing step using deep neural networks. These enable the model to account for non-linear relationships that are not captured by current numerical models or post-processing methods. Applied to the global data, our mixed models achieve a relative improvement in ensemble forecast skill (CRPS) of over 14%. Furthermore, we demonstrate that the improvement is larger for extreme weather events on select case studies. We also show that our post-processing can use fewer trajectories to achieve comparable results to the full ensemble. By using fewer trajectories, the computational costs of an ensemble prediction system can be reduced, allowing it to run at higher resolution and produce more accurate forecasts. This article is part of the theme issue 'Machine learning for weather and climate modelling'.
量化天气预报中的不确定性至关重要,尤其是在预测极端天气事件时。这通常通过集合预报系统来实现,该系统由许多并行运行的扰动数值天气模拟或轨迹组成。这些系统计算成本高昂,并且通常涉及统计后处理步骤,以低成本提高其原始预测质量。我们提出了一种混合模型,该模型仅使用原始天气轨迹的一个子集,并结合使用深度神经网络的后处理步骤。这使该模型能够考虑当前数值模型或后处理方法未捕捉到的非线性关系。应用于全球数据时,我们的混合模型在集合预报技能(连续排名概率得分)方面实现了超过14%的相对提升。此外,我们证明在选定的案例研究中,极端天气事件的提升更大。我们还表明,我们的后处理可以使用更少的轨迹来获得与完整集合相当的结果。通过使用更少的轨迹,可以降低集合预报系统的计算成本,使其能够以更高的分辨率运行并产生更准确的预报。本文是“用于天气和气候建模的机器学习”主题特刊的一部分。