Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, U.S.A.
School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, U.S.A.
Emerg Top Life Sci. 2021 Dec 21;5(6):765-777. doi: 10.1042/ETLS20210249.
Alzheimer's disease (AD) remains a devastating neurodegenerative disease with few preventive or curative treatments available. Modern technology developments of high-throughput omics platforms and imaging equipment provide unprecedented opportunities to study the etiology and progression of this disease. Meanwhile, the vast amount of data from various modalities, such as genetics, proteomics, transcriptomics, and imaging, as well as clinical features impose great challenges in data integration and analysis. Machine learning (ML) methods offer novel techniques to address high dimensional data, integrate data from different sources, model the etiological and clinical heterogeneity, and discover new biomarkers. These directions have the potential to help us better manage the disease progression and develop novel treatment strategies. This mini-review paper summarizes different ML methods that have been applied to study AD using single-platform or multi-modal data. We review the current state of ML applications for five key directions of AD research: disease classification, drug repurposing, subtyping, progression prediction, and biomarker discovery. This summary provides insights about the current research status of ML-based AD research and highlights potential directions for future research.
阿尔茨海默病(AD)仍然是一种破坏性的神经退行性疾病,目前可用的预防或治疗方法很少。高通量组学平台和成像设备等现代技术的发展为研究这种疾病的病因和进展提供了前所未有的机会。与此同时,来自遗传学、蛋白质组学、转录组学和影像学等不同模态以及临床特征的大量数据在数据集成和分析方面带来了巨大的挑战。机器学习(ML)方法为解决高维数据、整合来自不同来源的数据、对病因和临床异质性进行建模以及发现新的生物标志物提供了新的技术。这些方向有可能帮助我们更好地管理疾病进展并开发新的治疗策略。本文综述了应用于使用单平台或多模态数据研究 AD 的不同 ML 方法。我们回顾了 ML 在 AD 研究的五个关键方向的应用现状:疾病分类、药物再利用、亚型划分、进展预测和生物标志物发现。这篇综述提供了关于基于 ML 的 AD 研究的当前研究状况的见解,并强调了未来研究的潜在方向。