Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan.
Int J Mol Sci. 2021 Mar 9;22(5):2761. doi: 10.3390/ijms22052761.
Alzheimer's disease (AD) is a complex and severe neurodegenerative disease that still lacks effective methods of diagnosis. The current diagnostic methods of AD rely on cognitive tests, imaging techniques and cerebrospinal fluid (CSF) levels of amyloid-β1-42 (Aβ42), total tau protein and hyperphosphorylated tau (p-tau). However, the available methods are expensive and relatively invasive. Artificial intelligence techniques like machine learning tools have being increasingly used in precision diagnosis.
We conducted a meta-analysis to investigate the machine learning and novel biomarkers for the diagnosis of AD.
We searched PubMed, the Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews for reviews and trials that investigated the machine learning and novel biomarkers in diagnosis of AD.
In additional to Aβ and tau-related biomarkers, biomarkers according to other mechanisms of AD pathology have been investigated. Neuronal injury biomarker includes neurofiliament light (NFL). Biomarkers about synaptic dysfunction and/or loss includes neurogranin, BACE1, synaptotagmin, SNAP-25, GAP-43, synaptophysin. Biomarkers about neuroinflammation includes sTREM2, and YKL-40. Besides, d-glutamate is one of coagonists at the NMDARs. Several machine learning algorithms including support vector machine, logistic regression, random forest, and naïve Bayes) to build an optimal predictive model to distinguish patients with AD from healthy controls.
Our results revealed machine learning with novel biomarkers and multiple variables may increase the sensitivity and specificity in diagnosis of AD. Rapid and cost-effective HPLC for biomarkers and machine learning algorithms may assist physicians in diagnosing AD in outpatient clinics.
阿尔茨海默病(AD)是一种复杂而严重的神经退行性疾病,目前仍然缺乏有效的诊断方法。AD 的当前诊断方法依赖于认知测试、成像技术和脑脊液(CSF)中淀粉样蛋白-β1-42(Aβ42)、总tau 蛋白和磷酸化 tau(p-tau)的水平。然而,现有的方法昂贵且相对具有侵入性。机器学习等人工智能技术已越来越多地用于精准诊断。
我们进行了一项荟萃分析,以调查用于 AD 诊断的机器学习和新型生物标志物。
我们搜索了 PubMed、Cochrane 对照试验中心注册库和 Cochrane 系统评价数据库,以查找调查 AD 诊断中机器学习和新型生物标志物的综述和试验。
除了 Aβ 和 tau 相关生物标志物外,还研究了其他 AD 病理机制相关的生物标志物。神经元损伤生物标志物包括神经丝轻链(NFL)。与突触功能障碍和/或丧失相关的生物标志物包括神经颗粒蛋白、BACE1、突触结合蛋白、SNAP-25、GAP-43、突触小体蛋白。与神经炎症相关的生物标志物包括 sTREM2 和 YKL-40。此外,D-谷氨酸是 NMDAR 上的一种共激动剂。几种机器学习算法,包括支持向量机、逻辑回归、随机森林和朴素贝叶斯,可用于构建最佳预测模型,以区分 AD 患者和健康对照者。
我们的研究结果表明,新型生物标志物和多变量的机器学习可能会提高 AD 诊断的敏感性和特异性。用于生物标志物和机器学习算法的快速且经济有效的 HPLC 可能有助于医生在门诊中诊断 AD。