Suppr超能文献

机器学习与新型生物标志物在阿尔茨海默病诊断中的应用。

Machine Learning and Novel Biomarkers for the Diagnosis of Alzheimer's Disease.

机构信息

Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.

Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan.

出版信息

Int J Mol Sci. 2021 Mar 9;22(5):2761. doi: 10.3390/ijms22052761.

Abstract

BACKGROUND

Alzheimer's disease (AD) is a complex and severe neurodegenerative disease that still lacks effective methods of diagnosis. The current diagnostic methods of AD rely on cognitive tests, imaging techniques and cerebrospinal fluid (CSF) levels of amyloid-β1-42 (Aβ42), total tau protein and hyperphosphorylated tau (p-tau). However, the available methods are expensive and relatively invasive. Artificial intelligence techniques like machine learning tools have being increasingly used in precision diagnosis.

METHODS

We conducted a meta-analysis to investigate the machine learning and novel biomarkers for the diagnosis of AD.

METHODS

We searched PubMed, the Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews for reviews and trials that investigated the machine learning and novel biomarkers in diagnosis of AD.

RESULTS

In additional to Aβ and tau-related biomarkers, biomarkers according to other mechanisms of AD pathology have been investigated. Neuronal injury biomarker includes neurofiliament light (NFL). Biomarkers about synaptic dysfunction and/or loss includes neurogranin, BACE1, synaptotagmin, SNAP-25, GAP-43, synaptophysin. Biomarkers about neuroinflammation includes sTREM2, and YKL-40. Besides, d-glutamate is one of coagonists at the NMDARs. Several machine learning algorithms including support vector machine, logistic regression, random forest, and naïve Bayes) to build an optimal predictive model to distinguish patients with AD from healthy controls.

CONCLUSIONS

Our results revealed machine learning with novel biomarkers and multiple variables may increase the sensitivity and specificity in diagnosis of AD. Rapid and cost-effective HPLC for biomarkers and machine learning algorithms may assist physicians in diagnosing AD in outpatient clinics.

摘要

背景

阿尔茨海默病(AD)是一种复杂而严重的神经退行性疾病,目前仍然缺乏有效的诊断方法。AD 的当前诊断方法依赖于认知测试、成像技术和脑脊液(CSF)中淀粉样蛋白-β1-42(Aβ42)、总tau 蛋白和磷酸化 tau(p-tau)的水平。然而,现有的方法昂贵且相对具有侵入性。机器学习等人工智能技术已越来越多地用于精准诊断。

方法

我们进行了一项荟萃分析,以调查用于 AD 诊断的机器学习和新型生物标志物。

方法

我们搜索了 PubMed、Cochrane 对照试验中心注册库和 Cochrane 系统评价数据库,以查找调查 AD 诊断中机器学习和新型生物标志物的综述和试验。

结果

除了 Aβ 和 tau 相关生物标志物外,还研究了其他 AD 病理机制相关的生物标志物。神经元损伤生物标志物包括神经丝轻链(NFL)。与突触功能障碍和/或丧失相关的生物标志物包括神经颗粒蛋白、BACE1、突触结合蛋白、SNAP-25、GAP-43、突触小体蛋白。与神经炎症相关的生物标志物包括 sTREM2 和 YKL-40。此外,D-谷氨酸是 NMDAR 上的一种共激动剂。几种机器学习算法,包括支持向量机、逻辑回归、随机森林和朴素贝叶斯,可用于构建最佳预测模型,以区分 AD 患者和健康对照者。

结论

我们的研究结果表明,新型生物标志物和多变量的机器学习可能会提高 AD 诊断的敏感性和特异性。用于生物标志物和机器学习算法的快速且经济有效的 HPLC 可能有助于医生在门诊中诊断 AD。

相似文献

1
Machine Learning and Novel Biomarkers for the Diagnosis of Alzheimer's Disease.
Int J Mol Sci. 2021 Mar 9;22(5):2761. doi: 10.3390/ijms22052761.
2
Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer's disease: Machine learning approaches.
J Psychopharmacol. 2021 Mar;35(3):265-272. doi: 10.1177/0269881120972331. Epub 2021 Feb 15.
3
Fluid biomarker-based molecular phenotyping of Alzheimer's disease patients in research and clinical settings.
Prog Mol Biol Transl Sci. 2019;168:3-23. doi: 10.1016/bs.pmbts.2019.07.006. Epub 2019 Jul 24.
4
Glial activation and inflammation along the Alzheimer's disease continuum.
J Neuroinflammation. 2019 Feb 21;16(1):46. doi: 10.1186/s12974-019-1399-2.
6
Cerebrospinal fluid neurogranin and YKL-40 as biomarkers of Alzheimer's disease.
Ann Clin Transl Neurol. 2015 Nov 20;3(1):12-20. doi: 10.1002/acn3.266. eCollection 2016 Jan.
9
Biomarkers for Alzheimer's disease: current status and prospects for the future.
J Intern Med. 2018 Dec;284(6):643-663. doi: 10.1111/joim.12816. Epub 2018 Aug 19.

引用本文的文献

2
X-FASNet: cross-scale feature-aware with self-attention network for cognitive decline assessment in Alzheimer's disease.
Front Neurol. 2025 Aug 12;16:1630838. doi: 10.3389/fneur.2025.1630838. eCollection 2025.
4
Emerging trends in Alzheimer's disease diagnosis and prediction using artificial intelligence: A bibliometric analysis of the top cited 100 articles.
Digit Health. 2025 Jul 17;11:20552076251362098. doi: 10.1177/20552076251362098. eCollection 2025 Jan-Dec.
8
Early detection of Alzheimer's disease using deep learning methods.
Alzheimers Dement. 2025 May;21(5):e70175. doi: 10.1002/alz.70175.

本文引用的文献

1
Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer's disease: Machine learning approaches.
J Psychopharmacol. 2021 Mar;35(3):265-272. doi: 10.1177/0269881120972331. Epub 2021 Feb 15.
3
Deep learning detection of informative features in tau PET for Alzheimer's disease classification.
BMC Bioinformatics. 2020 Dec 28;21(Suppl 21):496. doi: 10.1186/s12859-020-03848-0.
4
Application and assessment of deep learning for the generation of potential NMDA receptor antagonists.
Phys Chem Chem Phys. 2021 Jan 21;23(2):1197-1214. doi: 10.1039/d0cp03620j.
5
Body Fluid Biomarkers for Alzheimer's Disease-An Up-To-Date Overview.
Biomedicines. 2020 Oct 15;8(10):421. doi: 10.3390/biomedicines8100421.
7
Biomarkers for Alzheimer's Disease Early Diagnosis.
J Pers Med. 2020 Sep 4;10(3):114. doi: 10.3390/jpm10030114.
8
Application of modern neuroimaging technology in the diagnosis and study of Alzheimer's disease.
Neural Regen Res. 2021 Jan;16(1):73-79. doi: 10.4103/1673-5374.286957.
9
Biomarkers in the diagnosis and prognosis of Alzheimer's disease.
J Neurol. 2020 Aug;267(8):2475-2477. doi: 10.1007/s00415-020-10037-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验