Chen Jingjing, Girard Manon, Wang Song, Kisfalvi Krisztina, Lirio Richard
Takeda Pharmaceuticals, Cambridge, Massachusetts, USA.
Cytel, Cambridge, Massachusetts, USA.
J Biopharm Stat. 2022 Mar;32(2):330-345. doi: 10.1080/10543406.2021.2009500. Epub 2021 Dec 9.
With recent advances in machine learning, we demonstrated the use of supervised machine learning to optimize the prediction of treatment outcomes of vedolizumab through iterative optimization using VARSITY and VISIBLE 1 data in patients with moderate-to-severe ulcerative colitis. The analysis was carried out using elastic net regularized regression following a 2-stage training process. The model performance was assessed through AUROC, specificity, sensitivity, and accuracy. The generalizable predictive patterns suggest that easily obtained baseline and medical history variables may be able to predict therapeutic response to vedolizumab with clinically meaningful accuracy, implying a potential for individualized prescription of vedolizumab.
随着机器学习的最新进展,我们展示了如何使用监督式机器学习,通过对中重度溃疡性结肠炎患者使用VARSITY和VISIBLE 1数据进行迭代优化,来优化维多珠单抗治疗结果的预测。分析是在两阶段训练过程后使用弹性网正则化回归进行的。通过曲线下面积(AUROC)、特异性、敏感性和准确性来评估模型性能。可推广的预测模式表明,容易获得的基线和病史变量可能能够以具有临床意义的准确性预测对维多珠单抗的治疗反应,这意味着维多珠单抗个体化处方具有潜力。