Suppr超能文献

溃疡性结肠炎中的人工智能和机器学习技术

Artificial intelligence and machine learning technologies in ulcerative colitis.

作者信息

Kulkarni Chiraag, Liu Derek, Fardeen Touran, Dickson Eliza Rose, Jang Hyunsu, Sinha Sidhartha R, Gubatan John

机构信息

Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA.

Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 300 Pasteur Drive, M211, Stanford, CA 94305, USA.

出版信息

Therap Adv Gastroenterol. 2024 Sep 5;17:17562848241272001. doi: 10.1177/17562848241272001. eCollection 2024.

Abstract

Interest in artificial intelligence (AI) applications for ulcerative colitis (UC) has grown tremendously in recent years. In the past 5 years, there have been over 80 studies focused on machine learning (ML) tools to address a wide range of clinical problems in UC, including diagnosis, prognosis, identification of new UC biomarkers, monitoring of disease activity, and prediction of complications. AI classifiers such as random forest, support vector machines, neural networks, and logistic regression models have been used to model UC clinical outcomes using molecular (transcriptomic) and clinical (electronic health record and laboratory) datasets with relatively high performance (accuracy, sensitivity, and specificity). Application of ML algorithms such as computer vision, guided image filtering, and convolutional neural networks have also been utilized to analyze large and high-dimensional imaging datasets such as endoscopic, histologic, and radiological images for UC diagnosis and prediction of complications (post-surgical complications, colorectal cancer). Incorporation of these ML tools to guide and optimize UC clinical practice is promising but will require large, high-quality validation studies that overcome the risk of bias as well as consider cost-effectiveness compared to standard of care.

摘要

近年来,对用于溃疡性结肠炎(UC)的人工智能(AI)应用的兴趣急剧增长。在过去五年中,有超过80项研究聚焦于机器学习(ML)工具,以解决UC中广泛的临床问题,包括诊断、预后、新UC生物标志物的识别、疾病活动监测以及并发症预测。诸如随机森林、支持向量机、神经网络和逻辑回归模型等AI分类器已被用于利用分子(转录组学)和临床(电子健康记录和实验室)数据集对UC临床结果进行建模,其性能(准确性、敏感性和特异性)相对较高。诸如计算机视觉、引导图像滤波和卷积神经网络等ML算法也已被用于分析大型高维成像数据集,如用于UC诊断和并发症(术后并发症、结直肠癌)预测的内镜、组织学和放射学图像。将这些ML工具纳入以指导和优化UC临床实践是有前景的,但需要大规模、高质量的验证研究,以克服偏倚风险,并与标准治疗相比考虑成本效益。

相似文献

1
Artificial intelligence and machine learning technologies in ulcerative colitis.
Therap Adv Gastroenterol. 2024 Sep 5;17:17562848241272001. doi: 10.1177/17562848241272001. eCollection 2024.
2
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.
J Med Internet Res. 2025 Jun 23;27:e72398. doi: 10.2196/72398.
4
Artificial intelligence in inflammatory bowel disease endoscopy - a review of current evidence and a critical perspective on future challenges.
Therap Adv Gastroenterol. 2025 Jul 13;18:17562848251350896. doi: 10.1177/17562848251350896. eCollection 2025.
5
The impact of biological interventions for ulcerative colitis on health-related quality of life.
Cochrane Database Syst Rev. 2015 Sep 22;2015(9):CD008655. doi: 10.1002/14651858.CD008655.pub3.
6
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
7
Advances in artificial intelligence for diabetes prediction: insights from a systematic literature review.
Artif Intell Med. 2025 Jun;164:103132. doi: 10.1016/j.artmed.2025.103132. Epub 2025 Apr 15.
8
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
9
Artificial intelligence in endoscopy related to inflammatory bowel disease: A systematic review.
Indian J Gastroenterol. 2024 Feb;43(1):172-187. doi: 10.1007/s12664-024-01531-3. Epub 2024 Feb 28.
10
Artificial intelligence-based multimodal model for the identification of ulcerative colitis with concomitant cytomegalovirus colitis.
Therap Adv Gastroenterol. 2025 Aug 13;18:17562848251364194. doi: 10.1177/17562848251364194. eCollection 2025.

引用本文的文献

1
Comprehensive analysis of a lipid metabolism-related gene signature for ulcerative colitis.
Transl Pediatr. 2025 Aug 31;14(8):1770-1786. doi: 10.21037/tp-2025-161. Epub 2025 Aug 27.
2
3
Editorial for the Special Issue "Advances in Medical Image Processing, Segmentation, and Classification".
Diagnostics (Basel). 2025 Apr 28;15(9):1114. doi: 10.3390/diagnostics15091114.

本文引用的文献

1
An artificial intelligence-driven scoring system to measure histological disease activity in ulcerative colitis.
United European Gastroenterol J. 2024 Oct;12(8):1028-1033. doi: 10.1002/ueg2.12562. Epub 2024 Apr 8.
2
Using Computer Vision to Improve Endoscopic Disease Quantification in Therapeutic Clinical Trials of Ulcerative Colitis.
Gastroenterology. 2024 Jan;166(1):155-167.e2. doi: 10.1053/j.gastro.2023.09.049. Epub 2023 Oct 11.
3
Enterobacteriaceae Growth Promotion by Intestinal Acylcarnitines, a Biomarker of Dysbiosis in Inflammatory Bowel Disease.
Cell Mol Gastroenterol Hepatol. 2024;17(1):131-148. doi: 10.1016/j.jcmgh.2023.09.005. Epub 2023 Sep 20.
6
Identification of diagnostic biomarks and immune cell infiltration in ulcerative colitis.
Sci Rep. 2023 Apr 13;13(1):6081. doi: 10.1038/s41598-023-33388-5.
7
Risk prediction model based on blood biomarkers for predicting moderate to severe endoscopic activity in patients with ulcerative colitis.
Front Med (Lausanne). 2023 Feb 21;10:1101237. doi: 10.3389/fmed.2023.1101237. eCollection 2023.
8
Artificial Intelligence Enabled Histological Prediction of Remission or Activity and Clinical Outcomes in Ulcerative Colitis.
Gastroenterology. 2023 Jun;164(7):1180-1188.e2. doi: 10.1053/j.gastro.2023.02.031. Epub 2023 Mar 4.
9
Artificial Intelligence Enables Quantitative Assessment of Ulcerative Colitis Histology.
Mod Pathol. 2023 Jun;36(6):100124. doi: 10.1016/j.modpat.2023.100124. Epub 2023 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验