Suppr超能文献

经颅直流电刺激小脑改变小脑皮层的发放精度:对细胞反应的建模研究。

Transcranial direct current stimulation of cerebellum alters spiking precision in cerebellar cortex: A modeling study of cellular responses.

机构信息

Biomedical Engineering Department, University of Connecticut, Storrs, Connecticut, United States of America.

Brain Imaging Research Center, University of Connecticut, Storrs, Connecticut, United States of America.

出版信息

PLoS Comput Biol. 2021 Dec 9;17(12):e1009609. doi: 10.1371/journal.pcbi.1009609. eCollection 2021 Dec.

Abstract

Transcranial direct current stimulation (tDCS) of the cerebellum has rapidly raised interest but the effects of tDCS on cerebellar neurons remain unclear. Assessing the cellular response to tDCS is challenging because of the uneven, highly stratified cytoarchitecture of the cerebellum, within which cellular morphologies, physiological properties, and function vary largely across several types of neurons. In this study, we combine MRI-based segmentation of the cerebellum and a finite element model of the tDCS-induced electric field (EF) inside the cerebellum to determine the field imposed on the cerebellar neurons throughout the region. We then pair the EF with multicompartment models of the Purkinje cell (PC), deep cerebellar neuron (DCN), and granule cell (GrC) and quantify the acute response of these neurons under various orientations, physiological conditions, and sequences of presynaptic stimuli. We show that cerebellar tDCS significantly modulates the postsynaptic spiking precision of the PC, which is expressed as a change in the spike count and timing in response to presynaptic stimuli. tDCS has modest effects, instead, on the PC tonic firing at rest and on the postsynaptic activity of DCN and GrC. In Purkinje cells, anodal tDCS shortens the repolarization phase following complex spikes (-14.7 ± 6.5% of baseline value, mean ± S.D.; max: -22.7%) and promotes burstiness with longer bursts compared to resting conditions. Cathodal tDCS, instead, promotes irregular spiking by enhancing somatic excitability and significantly prolongs the repolarization after complex spikes compared to baseline (+37.0 ± 28.9%, mean ± S.D.; max: +84.3%). tDCS-induced changes to the repolarization phase and firing pattern exceed 10% of the baseline values in Purkinje cells covering up to 20% of the cerebellar cortex, with the effects being distributed along the EF direction and concentrated in the area under the electrode over the cerebellum. Altogether, the acute effects of tDCS on cerebellum mainly focus on Purkinje cells and modulate the precision of the response to synaptic stimuli, thus having the largest impact when the cerebellar cortex is active. Since the spatiotemporal precision of the PC spiking is critical to learning and coordination, our results suggest cerebellar tDCS as a viable therapeutic option for disorders involving cerebellar hyperactivity such as ataxia.

摘要

经颅直流电刺激(tDCS)对小脑的刺激迅速引起了人们的兴趣,但 tDCS 对小脑神经元的影响仍不清楚。由于小脑的非均匀、高度分层的细胞结构,评估细胞对 tDCS 的反应具有挑战性,在这种结构中,细胞形态、生理特性和功能在几种神经元类型之间有很大差异。在这项研究中,我们结合基于 MRI 的小脑分割和小脑内 tDCS 诱导的电场(EF)的有限元模型,以确定整个区域内施加于小脑神经元的电场。然后,我们将 EF 与浦肯野细胞(PC)、深部小脑神经元(DCN)和颗粒细胞(GrC)的多室模型配对,并量化这些神经元在各种取向、生理条件和突触前刺激序列下的急性反应。我们表明,小脑 tDCS 显著调节了 PC 的突触后尖峰的精确性,这表现为对突触前刺激的尖峰计数和时间的变化。相反,tDCS 对静息时 PC 的紧张性放电和 DCN 和 GrC 的突触后活动的影响较小。在浦肯野细胞中,阳极 tDCS 缩短了复杂尖峰后的复极化阶段(与基线值相比,-14.7±6.5%,平均值±S.D.;最大值:-22.7%),并通过与静息状态相比,产生更长的爆发来促进爆发性。相反,阴极 tDCS 通过增强体细胞兴奋性促进不规则放电,并与基线相比显著延长复杂尖峰后的复极化(+37.0±28.9%,平均值±S.D.;最大值:+84.3%)。在覆盖小脑皮层 20%的范围内,浦肯野细胞中的复极化阶段和放电模式的 tDCS 诱导变化超过基线值的 10%,其影响沿 EF 方向分布,集中在小脑皮层上的电极下方区域。总的来说,小脑 tDCS 的急性作用主要集中在浦肯野细胞上,并调节对突触刺激的响应精度,因此在小脑皮层活跃时影响最大。由于 PC 尖峰的时空精度对学习和协调至关重要,我们的结果表明小脑 tDCS 是一种可行的治疗选择,用于治疗涉及小脑过度活跃的疾病,如共济失调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a8d/8691604/8a5d19bfb4b1/pcbi.1009609.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验