Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig, Germany.
Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University, Amsterdam, Netherlands.
Elife. 2020 Feb 5;9:e51771. doi: 10.7554/eLife.51771.
Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells. Neuronal network modeling revealed that these gradients improve spike-timing precision of Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of mossy fiber inputs.
小脑颗粒细胞 (GCs) 构成了脊椎动物大脑中所有神经元的大部分,但 GCs 之间的异质性及其潜在的功能后果知之甚少。在这里,我们在小鼠中鉴定了小脑颗粒细胞的生物物理特性中的意外梯度。与靠近浦肯野细胞层的 GC(外区 GC)相比,靠近白质的 GC(内区 GC)具有更高的发放阈值,并且可以通过更大的电流输入来维持发放。动态钳位实验表明,内区和外区 GC 分别优先响应高频和低频苔藓纤维输入,从而能够将苔藓纤维输入分散到其频率分量,就像傅里叶变换一样。此外,内区 GC 具有更快的轴突传导速度,并在浦肯野细胞中引发更快的突触电位。神经元网络模型表明,这些梯度提高了浦肯野细胞的尖峰定时精度,并减少了学习尖峰序列所需的 GC 数量。因此,我们的研究揭示了小脑皮层中的生物物理梯度,使苔藓纤维输入能够进行类似于傅里叶的变换。