Suppr超能文献

使用机器学习预测和分类乳腺癌。

Predicting and Classifying Breast Cancer Using Machine Learning.

机构信息

Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.

出版信息

J Comput Biol. 2022 Jun;29(6):497-514. doi: 10.1089/cmb.2021.0236. Epub 2021 Dec 9.

Abstract

The proposed research work aims to develop a method to predict and classify breast cancer (BC) at an early stage. In this research, three models are developed, and their performance is compared against each other. The first model was built using one of the machine learning algorithms called support vector machine (SVM), the second model was built using a deep learning algorithm called convolutional neural networks (CNNs), and the third model combines CNNs with a transfer learning technique for delivering better results. The data set is provided by the BC Histopathological Image Classification (BreakHis). All models are trained on the training set with two main categories: benign tumor and malignant tumor. The malignant tumor category is divided into subsets of invasive carcinoma tumors and in situ carcinoma tumors. Furthermore, invasive carcinoma tumors are classified into grade 1, grade 2, or grade 3, where grade 3 is the highest and is more aggressive. The results show that the accuracies of biopsy image classification using SVM are 92%, the accuracy of CNN is 94%, and the accuracy of CNN using the transfer learning technique is 97%. The results of this research will be beneficial in the early diagnosis of BC and help doctors in making better decisions and medical interventions.

摘要

本研究旨在开发一种早期预测和分类乳腺癌(BC)的方法。在这项研究中,开发了三个模型,并对它们的性能进行了比较。第一个模型是使用一种称为支持向量机(SVM)的机器学习算法构建的,第二个模型是使用称为卷积神经网络(CNNs)的深度学习算法构建的,第三个模型将 CNNs 与迁移学习技术相结合,以提供更好的结果。数据集由 BC 组织病理学图像分类(BreakHis)提供。所有模型都在训练集上进行训练,分为良性肿瘤和恶性肿瘤两大类。恶性肿瘤类别分为浸润性癌肿瘤和原位癌肿瘤两个亚类。此外,浸润性癌肿瘤分为 1 级、2 级或 3 级,其中 3 级是最高级别,侵袭性更强。研究结果表明,SVM 对活检图像分类的准确率为 92%,CNN 的准确率为 94%,使用迁移学习技术的 CNN 的准确率为 97%。这项研究的结果将有助于早期诊断 BC,并帮助医生做出更好的决策和医疗干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验