3BIGS Omicscore Pvt. Ltd., 909 Lavelle Building, Richmond Circle, Bangalore, 560025, India.
3BIGS Co. Ltd, 156, B-831, Geumgang Penterium IX Tower, Hwaseong, 18469, Republic of Korea.
BMC Med Imaging. 2023 Jan 30;23(1):19. doi: 10.1186/s12880-023-00964-0.
Grading of cancer histopathology slides requires more pathologists and expert clinicians as well as it is time consuming to look manually into whole-slide images. Hence, an automated classification of histopathological breast cancer sub-type is useful for clinical diagnosis and therapeutic responses. Recent deep learning methods for medical image analysis suggest the utility of automated radiologic imaging classification for relating disease characteristics or diagnosis and patient stratification.
To develop a hybrid model using the convolutional neural network (CNN) and the long short-term memory recurrent neural network (LSTM RNN) to classify four benign and four malignant breast cancer subtypes. The proposed CNN-LSTM leveraging on ImageNet uses a transfer learning approach in classifying and predicting four subtypes of each. The proposed model was evaluated on the BreakHis dataset comprises 2480 benign and 5429 malignant cancer images acquired at magnifications of 40×, 100×, 200× and 400×.
The proposed hybrid CNN-LSTM model was compared with the existing CNN models used for breast histopathological image classification such as VGG-16, ResNet50, and Inception models. All the models were built using three different optimizers such as adaptive moment estimator (Adam), root mean square propagation (RMSProp), and stochastic gradient descent (SGD) optimizers by varying numbers of epochs. From the results, we noticed that the Adam optimizer was the best optimizer with maximum accuracy and minimum model loss for both the training and validation sets. The proposed hybrid CNN-LSTM model showed the highest overall accuracy of 99% for binary classification of benign and malignant cancer, and, whereas, 92.5% for multi-class classifier of benign and malignant cancer subtypes, respectively.
To conclude, the proposed transfer learning approach outperformed the state-of-the-art machine and deep learning models in classifying benign and malignant cancer subtypes. The proposed method is feasible in classification of other cancers as well as diseases.
癌症组织病理学幻灯片的分级需要更多的病理学家和专家临床医生,并且手动查看全幻灯片图像也很耗时。因此,对组织病理学乳腺癌亚型进行自动分类对于临床诊断和治疗反应很有用。最近用于医学图像分析的深度学习方法表明,自动化放射影像学分类对于关联疾病特征或诊断以及患者分层很有用。
使用卷积神经网络(CNN)和长短期记忆递归神经网络(LSTM RNN)开发一种混合模型,以对四种良性和四种恶性乳腺癌亚型进行分类。所提出的基于 ImageNet 的 CNN-LSTM 利用迁移学习方法对每种亚型进行分类和预测。在由 40×、100×、200×和 400×放大倍数采集的 2480 张良性和 5429 张恶性癌症图像的 BreakHis 数据集上评估了所提出的模型。
将所提出的混合 CNN-LSTM 模型与用于乳腺组织病理学图像分类的现有 CNN 模型(如 VGG-16、ResNet50 和 Inception 模型)进行了比较。所有模型都使用三种不同的优化器(自适应矩估计器(Adam)、均方根传播(RMSProp)和随机梯度下降(SGD)优化器)构建,通过改变epoch 的数量。结果表明,Adam 优化器是最佳优化器,在训练集和验证集上均具有最高的准确性和最小的模型损失。所提出的混合 CNN-LSTM 模型对良性和恶性癌症的二进制分类的总体准确率最高,为 99%,而良性和恶性癌症亚型的多类分类器的准确率分别为 92.5%。
总之,所提出的迁移学习方法在良性和恶性癌症亚型的分类中优于最新的机器和深度学习模型。该方法在分类其他癌症和疾病方面也是可行的。