Suppr超能文献

一种将单原子催化剂固定在金属有机框架中以增强光催化作用的通用策略。

A General Strategy to Immobilize Single-Atom Catalysts in Metal-Organic Frameworks for Enhanced Photocatalysis.

作者信息

Sui Jianfei, Liu Hang, Hu Shaojin, Sun Kang, Wan Gang, Zhou Hua, Zheng Xiao, Jiang Hai-Long

机构信息

College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

Department of Mechanical Engineering and Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.

出版信息

Adv Mater. 2022 Feb;34(6):e2109203. doi: 10.1002/adma.202109203. Epub 2021 Dec 23.

Abstract

Single-atom catalysts (SACs) are witnessing rapid development due to their high activity and selectivity toward diverse reactions. However, it remains a grand challenge in the general synthesis of SACs, particularly featuring an identical chemical microenvironment and on the same support. Herein, a universal synthetic protocol is developed to immobilize SACs in metal-organic frameworks (MOFs). Significantly, by means of SnO as a mediator or adaptor, not only different single-atom metal sites, such as Pt, Cu, and Ni, etc., can be installed, but also the MOF supports can be changed (for example, UiO-66-NH , PCN-222, and DUT-67) to afford M /SnO /MOF architecture. Taking UiO-66-NH as a representative, the Pt /SnO /MOF exhibits approximately five times higher activity toward photocatalytic H production than the corresponding Pt nanoparticles (≈2.5 nm) stabilized by SnO /UiO-66-NH . Remarkably, despite featuring identical parameters in the chemical microenvironment and support in M /SnO /UiO-66-NH , the Pt catalyst possesses a hydrogen evolution rate of 2167 µmol g h , superior to the Cu and Ni counterparts, which is attributed to the differentiated hydrogen binding free energies, as supported by density-functional theory (DFT) calculations. This is thought to be the first report on a universal approach toward the stabilization of SACs with identical chemical microenvironment on an identical support.

摘要

单原子催化剂(SACs)因其对各种反应具有高活性和选择性而正在迅速发展。然而,在SACs的一般合成中,特别是在具有相同化学微环境且在相同载体上的合成方面,仍然是一个巨大的挑战。在此,开发了一种通用的合成方案,用于将SACs固定在金属有机框架(MOFs)中。值得注意的是,通过使用SnO作为介质或适配器,不仅可以安装不同的单原子金属位点,如Pt、Cu和Ni等,还可以改变MOF载体(例如UiO-66-NH 、PCN-222和DUT-67),以提供M /SnO /MOF结构。以UiO-66-NH为代表,Pt /SnO /MOF对光催化产氢的活性比由SnO /UiO-66-NH稳定的相应Pt纳米颗粒(≈2.5 nm)高约五倍。值得注意的是,尽管M /SnO /UiO-66-NH在化学微环境和载体方面具有相同的参数,但Pt催化剂的析氢速率为2167 µmol g h ,优于Cu和Ni的对应物,这归因于密度泛函理论(DFT)计算所支持的不同的氢结合自由能。这被认为是关于在相同载体上稳定具有相同化学微环境的SACs的通用方法的首次报道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验