Suppr超能文献

球形分层点投影:使用3D激光雷达数据生成用于目标分类的特征图像

Spherically Stratified Point Projection: Feature Image Generation for Object Classification Using 3D LiDAR Data.

作者信息

Bae Chulhee, Lee Yu-Cheol, Yu Wonpil, Lee Sejin

机构信息

Department of Mechanical Engineering, Kongju National University, Cheonan 31080, Korea.

Artificial Intelligence Laboratory, ETRI, Daejeon 34129, Korea.

出版信息

Sensors (Basel). 2021 Nov 25;21(23):7860. doi: 10.3390/s21237860.

Abstract

Three-dimensional point clouds have been utilized and studied for the classification of objects at the environmental level. While most existing studies, such as those in the field of computer vision, have detected object type from the perspective of sensors, this study developed a specialized strategy for object classification using LiDAR data points on the surface of the object. We propose a method for generating a spherically stratified point projection (2) feature image that can be applied to existing image-classification networks by performing pointwise classification based on a 3D point cloud using only LiDAR sensors data. The 2's main engine performs image generation through spherical stratification, evidence collection, and channel integration. Spherical stratification categorizes neighboring points into three layers according to distance ranges. Evidence collection calculates the occupancy probability based on Bayes' rule to project 3D points onto a two-dimensional surface corresponding to each stratified layer. Channel integration generates 2 RGB images with three evidence values representing short, medium, and long distances. Finally, the 2 images are used as a trainable source for classifying the points into predefined semantic labels. Experimental results indicated the effectiveness of the proposed 2 in classifying feature images generated using the LeNet architecture.

摘要

三维点云已被用于环境层面物体的分类研究。虽然大多数现有研究,如计算机视觉领域的研究,是从传感器的角度检测物体类型,但本研究开发了一种利用物体表面激光雷达数据点进行物体分类的专门策略。我们提出了一种生成球形分层点投影(2)特征图像的方法,该方法通过仅使用激光雷达传感器数据基于三维点云进行逐点分类,可应用于现有的图像分类网络。2的主要引擎通过球形分层、证据收集和通道整合来执行图像生成。球形分层根据距离范围将相邻点分为三层。证据收集基于贝叶斯规则计算占用概率,以将三维点投影到与每个分层相对应的二维表面上。通道整合生成2幅RGB图像,其中三个证据值分别代表短距离、中距离和长距离。最后,这2幅图像用作将点分类为预定义语义标签的可训练源。实验结果表明所提出的2在对使用LeNet架构生成的特征图像进行分类方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec74/8659660/e18370af4995/sensors-21-07860-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验