Suppr超能文献

使用传感器手套和降维技术评估骨关节炎患者手部功能。

Using Sensorized Gloves and Dimensional Reduction for Hand Function Assessment of Patients with Osteoarthritis.

机构信息

Department of Mechanical Engineering and Construction, Universitat Jaume I, 12071 Castelló de la Plana, Spain.

Consorci Hospitalari Provincial de Castelló, Av. del Dr. Clarà, 19, 12002 Castelló de la Plana, Spain.

出版信息

Sensors (Basel). 2021 Nov 26;21(23):7897. doi: 10.3390/s21237897.

Abstract

Sensorized gloves allow the measurement of all hand kinematics that are essential for daily functionality. However, they are scarcely used by clinicians, mainly because of the difficulty of analyzing all joint angles simultaneously. This study aims to render this analysis easier in order to enable the applicability of the early detection of hand osteoarthritis (HOA) and the identification of indicators of dysfunction. Dimensional reduction was used to compare kinematics (16 angles) of HOA patients and healthy subjects while performing the tasks of the Sollerman hand function test (SHFT). Five synergies were identified by using principal component (PC) analyses, patients using less fingers arch, higher palm arching, and a more independent thumb abduction. The healthy PCs, explaining 70% of patients' data variance, were used to transform the set of angles of both samples into five reduced variables (RVs): fingers arch, hand closure, thumb-index pinch, forced thumb opposition, and palmar arching. Significant differences between samples were identified in the ranges of movement of most of the RVs and in the median values of hand closure and thumb opposition. A discriminant function for the detection of HOA, based in RVs, is provided, with a success rate of detection higher than that of the SHFT. The temporal profiles of the RVs in two tasks were also compared, showing their potentiality as dysfunction indicators. Finally, reducing the number of sensors to only one sensor per synergy was explored through a linear regression, resulting in a mean error of 7.0°.

摘要

传感手套可测量手部运动学的所有关键参数,这些参数对于日常功能至关重要。然而,临床医生很少使用它们,主要是因为同时分析所有关节角度非常困难。本研究旨在使这种分析变得更加容易,以便能够早期检测到手骨关节炎 (HOA) 并识别功能障碍的指标。通过主成分 (PC) 分析,使用降维来比较 HOA 患者和健康受试者在执行 Sollerman 手部功能测试 (SHFT) 任务时的运动学(16 个角度)。共识别出 5 个协同作用,患者的手指拱度较低,手掌拱度较高,拇指外展更独立。健康 PC 可解释 70%的患者数据方差,用于将两个样本的角度集转换为五个简化变量 (RVs):手指拱度、手闭合、拇指-食指捏合、强制拇指对掌和手掌拱度。在大多数 RV 的运动范围和手闭合以及拇指对掌的中位数方面,样本之间存在显著差异。基于 RVs 提供了用于检测 HOA 的判别函数,其检测成功率高于 SHFT。还比较了两个任务中 RV 的时间分布,显示了它们作为功能障碍指标的潜力。最后,通过线性回归探索了仅对每个协同作用使用一个传感器的方法,平均误差为 7.0°。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5da4/8659816/18d6b170b5d8/sensors-21-07897-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验