Suppr超能文献

利用两个光照相机响应的迭代加权正则化模型进行光谱重建。

Spectral Reconstruction Using an Iteratively Reweighted Regulated Model from Two Illumination Camera Responses.

机构信息

School of Statistics, Qufu Normal University, Qufu 273165, China.

School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.

出版信息

Sensors (Basel). 2021 Nov 27;21(23):7911. doi: 10.3390/s21237911.

Abstract

An improved spectral reflectance estimation method was developed to transform captured RGB images to spectral reflectance. The novelty of our method is an iteratively reweighted regulated model that combines polynomial expansion signals, which was developed for spectral reflectance estimation, and a cross-polarized imaging system, which is used to eliminate glare and specular highlights. Two RGB images are captured under two illumination conditions. The method was tested using ColorChecker charts. The results demonstrate that the proposed method could make a significant improvement of the accuracy in both spectral and colorimetric: it can achieve 23.8% improved accuracy in mean CIEDE2000 color difference, while it achieves 24.6% improved accuracy in RMS error compared with classic regularized least squares (RLS) method. The proposed method is sufficiently accurate in predicting the spectral properties and their performance within an acceptable range, i.e., typical customer tolerance of less than 3 DE units in the graphic arts industry.

摘要

提出了一种改进的光谱反射率估计方法,用于将捕获的 RGB 图像转换为光谱反射率。我们的方法的新颖之处在于一种迭代重新加权调节模型,该模型结合了光谱反射率估计用的多项式扩展信号和用于消除眩光和镜面反射高光的交叉偏振成像系统。在两种照明条件下捕获两个 RGB 图像。使用 ColorChecker 图表对该方法进行了测试。结果表明,该方法可以显著提高光谱和色度的精度:与经典正则化最小二乘(RLS)方法相比,它可以在平均 CIEDE2000 色差方面提高 23.8%的精度,在均方根误差方面提高 24.6%的精度。该方法在预测光谱性质及其性能方面具有足够的精度,即在图形艺术行业中,典型客户对小于 3 DE 单位的可接受范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdeb/8659446/ed736f3fd6db/sensors-21-07911-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验