School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China.
National Key Lab of Colour Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
Sensors (Basel). 2023 Jun 19;23(12):5706. doi: 10.3390/s23125706.
Colorimetric characterization is the basis of color information management in color imaging systems. In this paper, we propose a colorimetric characterization method based on kernel partial least squares (KPLS) for color imaging systems. This method takes the kernel function expansion of the three-channel response values (RGB) in the device-dependent space of the imaging system as input feature vectors, and CIE-1931 XYZ as output vectors. We first establish a KPLS color-characterization model for color imaging systems. Then we determine the hyperparameters based on nested cross validation and grid search; a color space transformation model is realized. The proposed model is validated with experiments. The CIELAB, CIELUV and CIEDE2000 color differences are used as evaluation metrics. The results of the nested cross validation test for the ColorChecker SG chart show that the proposed model is superior to the weighted nonlinear regression model and the neural network model. The method proposed in this paper has good prediction accuracy.
比色特性化是色彩成像系统中色彩信息管理的基础。在本文中,我们提出了一种基于核偏最小二乘法(KPLS)的色彩特性化方法,用于色彩成像系统。该方法以成像系统设备相关空间中三通道响应值(RGB)的核函数展开作为输入特征向量,以 CIE-1931 XYZ 作为输出向量。我们首先为色彩成像系统建立 KPLS 色彩特性化模型。然后,我们根据嵌套交叉验证和网格搜索确定超参数,实现色彩空间变换模型。通过实验验证了所提出的模型。CIELAB、CIELUV 和 CIEDE2000 色差被用作评估指标。ColorChecker SG 图表的嵌套交叉验证测试结果表明,所提出的模型优于加权非线性回归模型和神经网络模型。本文提出的方法具有良好的预测精度。