Tvstorm, Sunghyun Building, 255 Hyorung-to, Secho-gu, Seoul 13875, Korea.
Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, Korea.
Sensors (Basel). 2021 Nov 27;21(23):7923. doi: 10.3390/s21237923.
In general, facial image-based remote photoplethysmography (rPPG) methods use color-based and patch-based region-of-interest (ROI) selection methods to estimate the blood volume pulse (BVP) and beats per minute (BPM). Anatomically, the thickness of the skin is not uniform in all areas of the face, so the same diffuse reflection information cannot be obtained in each area. In recent years, various studies have presented experimental results for their ROIs but did not provide a valid rationale for the proposed regions. In this paper, to see the effect of skin thickness on the accuracy of the rPPG algorithm, we conducted an experiment on 39 anatomically divided facial regions. Experiments were performed with seven algorithms (CHROM, GREEN, ICA, PBV, POS, SSR, and LGI) using the UBFC-rPPG and LGI-PPGI datasets considering 29 selected regions and two adjusted regions out of 39 anatomically classified regions. We proposed a BVP similarity evaluation metric to find a region with high accuracy. We conducted additional experiments on the TOP-5 regions and BOT-5 regions and presented the validity of the proposed ROIs. The TOP-5 regions showed relatively high accuracy compared to the previous algorithm's ROI, suggesting that the anatomical characteristics of the ROI should be considered when developing a facial image-based rPPG algorithm.
一般来说,基于面部图像的远程光体积描记术 (rPPG) 方法使用基于颜色和基于斑块的感兴趣区域 (ROI) 选择方法来估计血液体积脉搏 (BVP) 和每分钟心跳数 (BPM)。从解剖学上讲,面部各个区域的皮肤厚度并不均匀,因此无法在每个区域获得相同的漫反射信息。近年来,各种研究都提出了其 ROI 的实验结果,但没有为提出的区域提供有效的基本原理。在本文中,为了观察皮肤厚度对 rPPG 算法准确性的影响,我们在 39 个解剖分割的面部区域上进行了实验。我们使用七种算法(CHROM、GREEN、ICA、PBV、POS、SSR 和 LGI),考虑了 29 个选定的区域以及从 39 个解剖分类区域中选择的两个调整区域,在 UBFC-rPPG 和 LGI-PPGI 数据集上进行了实验。我们提出了一种 BVP 相似性评估指标来找到具有高精度的区域。我们还在 TOP-5 区域和 BOT-5 区域上进行了额外的实验,展示了所提出 ROI 的有效性。TOP-5 区域与之前算法的 ROI 相比表现出相对较高的准确性,这表明在开发基于面部图像的 rPPG 算法时,应考虑 ROI 的解剖学特征。