Department of Electrical Engineering, Center for Innovative Research on Aging Society (CIRAS), and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chia-Yi 621, Taiwan.
Sensors (Basel). 2023 Jul 1;23(13):6079. doi: 10.3390/s23136079.
This paper presents an RGB-NIR (Near Infrared) dual-modality technique to analyze the remote photoplethysmogram (rPPG) signal and hence estimate the heart rate (in beats per minute), from a facial image sequence. Our main innovative contribution is the introduction of several denoising techniques such as Modified Amplitude Selective Filtering (MASF), Wavelet Decomposition (WD), and Robust Principal Component Analysis (RPCA), which take advantage of RGB and NIR band characteristics to uncover the rPPG signals effectively through this Independent Component Analysis (ICA)-based algorithm. Two datasets, of which one is the public PURE dataset and the other is the CCUHR dataset built with a popular Intel RealSense D435 RGB-D camera, are adopted in our experiments. Facial video sequences in the two datasets are diverse in nature with normal brightness, under-illumination (i.e., dark), and facial motion. Experimental results show that the proposed method has reached competitive accuracies among the state-of-the-art methods even at a shorter video length. For example, our method achieves MAE = 4.45 bpm (beats per minute) and RMSE = 6.18 bpm for RGB-NIR videos of 10 and 20 s in the CCUHR dataset and MAE = 3.24 bpm and RMSE = 4.1 bpm for RGB videos of 60-s in the PURE dataset. Our system has the advantages of accessible and affordable hardware, simple and fast computations, and wide realistic applications.
本文提出了一种 RGB-NIR(近红外)双模态技术,用于分析远程光体积描记图(rPPG)信号,并由此估计心率(以每分钟节拍数计),该方法基于面部图像序列。我们的主要创新贡献是引入了几种去噪技术,如修正幅度选择滤波(MASF)、小波分解(WD)和鲁棒主成分分析(RPCA),这些技术利用 RGB 和 NIR 波段的特点,通过这种基于独立成分分析(ICA)的算法有效地揭示 rPPG 信号。我们的实验采用了两个数据集,其中一个是公共 PURE 数据集,另一个是使用流行的 Intel RealSense D435 RGB-D 相机构建的 CCUHR 数据集。两个数据集的面部视频序列在自然亮度、低光照(即暗)和面部运动方面具有多样性。实验结果表明,即使在较短的视频长度下,所提出的方法也达到了最先进方法的竞争精度。例如,对于 CCUHR 数据集的 10 秒和 20 秒的 RGB-NIR 视频,我们的方法的平均绝对误差(MAE)分别为 4.45 bpm(每分钟节拍数)和 RMSE = 6.18 bpm,对于 PURE 数据集的 60 秒的 RGB 视频,MAE 为 3.24 bpm,RMSE 为 4.1 bpm。我们的系统具有硬件易于获取和负担得起、计算简单快速以及广泛的实际应用等优点。