Department of Biomedical Engineering, Kyung Hee University, Yongin, Republic of Korea.
Department of Computer Science and Engineering, Soonchunhyang University, Asan, Republic of Korea.
Sci Rep. 2022 May 3;12(1):7141. doi: 10.1038/s41598-022-11265-x.
Photoplethysmography imaging (PPGI) sensors have attracted a significant amount of attention as they enable the remote monitoring of heart rates (HRs) and thus do not require any additional devices to be worn on fingers or wrists. In this study, we mounted PPGI sensors on a robot for active and autonomous HR (R-AAH) estimation. We proposed an algorithm that provides accurate HR estimation, which can be performed in real time using vision and robot manipulation algorithms. By simplifying the extraction of facial skin images using saturation (S) values in the HSV color space, and selecting pixels based on the most frequent S value within the face image, we achieved a reliable HR assessment. The results of the proposed algorithm using the R-AAH method were evaluated by rigorous comparison with the results of existing algorithms on the UBFC-RPPG dataset (n = 42). The proposed algorithm yielded an average absolute error (AAE) of 0.71 beats per minute (bpm). The developed algorithm is simple, with a processing time of less than 1 s (275 ms for an 8-s window). The algorithm was further validated on our own dataset (BAMI-RPPG dataset [n = 14]) with an AAE of 0.82 bpm.
光电容积脉搏波成像(PPGI)传感器因其能够远程监测心率(HRs)而受到广泛关注,因此不需要在手指或手腕上佩戴任何额外的设备。在这项研究中,我们在机器人上安装了 PPGI 传感器,用于主动和自主 HR(R-AAH)估计。我们提出了一种算法,可以提供准确的 HR 估计,该算法可以使用视觉和机器人操作算法实时执行。通过简化 HSV 颜色空间中饱和度(S)值对面部皮肤图像的提取,并根据面部图像中最常见的 S 值选择像素,我们实现了可靠的 HR 评估。通过与 UBFC-RPPG 数据集(n=42)上现有算法的结果进行严格比较,评估了使用 R-AAH 方法的建议算法的结果。所提出的算法的平均绝对误差(AAE)为 0.71 次/分钟(bpm)。所开发的算法简单,处理时间小于 1 秒(8 秒窗口为 275 毫秒)。该算法在我们自己的数据集(BAMI-RPPG 数据集[n=14])上进一步得到验证,AAE 为 0.82 bpm。