Laboratoire Traitement du Signal et de l'Image (LTSI-Inserm UMR 1099), Université de Rennes 1, 35000 Rennes, France.
Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, I3A, IIS Aragón, University of Zaragoza, and with the CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain.
Sensors (Basel). 2021 Nov 29;21(23):7976. doi: 10.3390/s21237976.
The present paper proposes the design of a sleep monitoring platform. It consists of an entire sleep monitoring system based on a smart glove sensor called UpNEA worn during the night for signals acquisition, a mobile application, and a remote server called AeneA for cloud computing. UpNEA acquires a 3-axis accelerometer signal, a photoplethysmography (PPG), and a peripheral oxygen saturation (SpO2) signal from the index finger. Overnight recordings are sent from the hardware to a mobile application and then transferred to AeneA. After cloud computing, the results are shown in a web application, accessible for the user and the clinician. The AeneA sleep monitoring activity performs different tasks: sleep stages classification and oxygen desaturation assessment; heart rate and respiration rate estimation; tachycardia, bradycardia, atrial fibrillation, and premature ventricular contraction detection; and apnea and hypopnea identification and classification. The PPG breathing rate estimation algorithm showed an absolute median error of 0.5 breaths per minute for the 32 s window and 0.2 for the 64 s window. The apnea and hypopnea detection algorithm showed an accuracy (Acc) of 75.1%, by windowing the PPG in one-minute segments. The classification task revealed 92.6% Acc in separating central from obstructive apnea, 83.7% in separating central apnea from central hypopnea and 82.7% in separating obstructive apnea from obstructive hypopnea. The novelty of the integrated algorithms and the top-notch cloud computing products deployed, encourage the production of the proposed solution for home sleep monitoring.
本论文提出了睡眠监测平台的设计。它由一个完整的睡眠监测系统组成,该系统基于一个名为 UpNEA 的智能手套传感器,该传感器在夜间佩戴用于采集信号,还包括一个移动应用程序和一个名为 AeneA 的远程服务器,用于云计算。UpNEA 从食指采集三轴加速度计信号、光体积描记 (PPG) 和外周血氧饱和度 (SpO2) 信号。夜间记录从硬件发送到移动应用程序,然后传输到 AeneA。云计算后,结果在一个网络应用程序中显示,用户和临床医生均可访问。AeneA 的睡眠监测活动执行不同的任务:睡眠阶段分类和氧减评估;心率和呼吸率估计;心动过速、心动过缓、心房颤动和室性早搏检测;以及呼吸暂停和低通气识别和分类。PPG 呼吸率估计算法在 32 秒窗口的绝对中位数误差为 0.5 次/分钟,在 64 秒窗口的绝对中位数误差为 0.2 次/分钟。通过将 PPG 分成一分钟一段进行分段,呼吸暂停和低通气检测算法的准确率 (Acc) 为 75.1%。分类任务显示,区分中枢性和阻塞性呼吸暂停的准确率为 92.6%,区分中枢性呼吸暂停和中枢性低通气的准确率为 83.7%,区分阻塞性呼吸暂停和阻塞性低通气的准确率为 82.7%。集成算法和一流云计算产品的新颖性,鼓励开发人员提出用于家庭睡眠监测的解决方案。