IEEE J Biomed Health Inform. 2019 Mar;23(2):607-617. doi: 10.1109/JBHI.2018.2817368. Epub 2018 Mar 22.
This paper presents a methodology to automatically screen for sleep apnea based on the detection of apnea and hypopnea events in the blood oxygen saturation (SpO) signal.
It starts by detecting all desaturations in the SpO signal. From these desaturations, a total of 143 time-domain features are extracted. After feature selection, the six most discriminative features are used to construct classifiers to predict if desaturations are caused by respiratory events. From these, a random forest classifier yielded the best classification performance. The number of desaturations, classified as caused by respiratory events per hour of recording, can then be used as an estimate of the apnea-hypopnea index (AHI), and to predict whether or not a patient suffers from sleep apnea-hypopnea syndrome (SAHS). All classifiers were developed based on a subset of 500 subjects of the Sleep Heart Health Study (SHHS) and tested on three different datasets, containing 8052 subjects in total.
An averaged desaturation classification accuracy of 82.8% was achieved over the different test sets. Subjects having SAHS with an AHI greater than 15 can be detected with an average accuracy of 87.6%.
The achieved SAHS screening outperforms SpO methods from the literature on the SHHS test dataset. Moreover, the robustness of the method was shown when tested on different independent test sets.
These results show that an algorithm based on simple features of SpO desaturations can outperform more elaborate methods in the detection of apneic events and the screening of SAHS patients.
本文提出了一种基于血氧饱和度(SpO)信号中呼吸暂停和低通气事件检测的自动睡眠呼吸暂停筛查方法。
首先检测 SpO 信号中的所有饱和度下降事件。从这些饱和度下降事件中,共提取了 143 个时域特征。经过特征选择,使用六个最具判别力的特征构建分类器,以预测饱和度下降是否由呼吸事件引起。其中,随机森林分类器的分类性能最佳。每小时记录的被分类为由呼吸事件引起的饱和度下降次数可作为呼吸暂停低通气指数(AHI)的估计值,并预测患者是否患有睡眠呼吸暂停低通气综合征(SAHS)。所有分类器均基于睡眠心脏健康研究(SHHS)的 500 名受试者子集进行开发,并在总共包含 8052 名受试者的三个不同数据集上进行了测试。
在不同的测试集中,平均饱和度下降分类准确率达到 82.8%。对于 AHI 大于 15 的 SAHS 患者,平均准确率可达 87.6%。
所实现的 SAHS 筛查在 SHHS 测试数据集上优于文献中的 SpO 方法。此外,当在不同的独立测试集上进行测试时,该方法的稳健性得到了证明。
这些结果表明,基于 SpO 饱和度下降简单特征的算法可以在检测呼吸暂停事件和筛查 SAHS 患者方面优于更复杂的方法。