IEEE Trans Biomed Eng. 2020 Mar;67(3):893-904. doi: 10.1109/TBME.2019.2923448. Epub 2019 Jun 17.
The objective of this paper is to obtain accurate estimation of breathing rate (BR), using only the electrocardiogram (ECG) or the photoplethysmogram (PPG) signals, to avoid wearing cumbersome and uncomfortable sensors for direct measurements.
Several respiration waveforms are derived from ECG or PPG signals based on amplitude, frequency, and baseline wander modulations. It is, however, difficult to determine their optimal combination for BR estimation due to the noise and patient specificity. We first propose to quantify the quality of modulation waveforms using respiratory quality indices (RQIs). We then present two methods: the first automatically selects the modulation signal with highest RQI for BR estimation, and the second tracks the respiration signal using the Kalman smoother to fuse modulation signals with highest RQI.
These two methods are evaluated on two independent datasets, one benchmark database (DB) with immobilized patients recordings and the second with those performing daily activities. Our results outperform existing methods in the literature in both the cases.
Experimental results show that the RQIs coupled with a fusion algorithm increases the accuracy for BR estimations in dealing with derived modulation signals.
This work describes a robust Kalman Smoother method applicable in multiple clinical contexts to improve breathing rate estimation from data fusion.
本文旨在仅使用心电图(ECG)或光电容积脉搏波(PPG)信号获得准确的呼吸率(BR)估计,避免佩戴用于直接测量的繁琐且不舒服的传感器。
根据幅度、频率和基线漂移调制,从 ECG 或 PPG 信号中得出几个呼吸波。然而,由于噪声和患者特异性,很难确定它们用于 BR 估计的最佳组合。我们首先提出使用呼吸质量指数(RQI)来量化调制波形的质量。然后,我们提出了两种方法:第一种方法自动选择具有最高 RQI 的调制信号进行 BR 估计,第二种方法使用卡尔曼平滑器跟踪呼吸信号,以融合具有最高 RQI 的调制信号。
这两种方法在两个独立的数据集上进行了评估,一个是带有固定患者记录的基准数据库(DB),另一个是带有日常活动记录的数据库。在这两种情况下,我们的结果均优于文献中的现有方法。
实验结果表明,RQI 与融合算法相结合,可提高处理衍生调制信号时 BR 估计的准确性。
这项工作描述了一种稳健的卡尔曼平滑器方法,适用于多种临床环境,可通过数据融合来改善呼吸率估计。