Suppr超能文献

鲸鱼优化算法在深度神经网络中的应用。

The Whale Optimization Algorithm Approach for Deep Neural Networks.

机构信息

Department of Automatic Control and Robotics, AGH University of Science and Technology, 30-059 Cracow, Poland.

出版信息

Sensors (Basel). 2021 Nov 30;21(23):8003. doi: 10.3390/s21238003.

Abstract

One of the biggest challenge in the field of deep learning is the parameter selection and optimization process. In recent years different algorithms have been proposed including bio-inspired solutions to solve this problem, however, there are many challenges including local minima, saddle points, and vanishing gradients. In this paper, we introduce the Whale Optimisation Algorithm (WOA) based on the swarm foraging behavior of humpback whales to optimise neural network hyperparameters. We wish to stress that to the best of our knowledge this is the first attempt that uses Whale Optimisation Algorithm for the optimisation task of hyperparameters. After a detailed description of the WOA algorithm we formulate and explain the application in deep learning, present the implementation, and compare the proposed algorithm with other well-known algorithms including widely used Grid and Random Search methods. Additionally, we have implemented a third dimension feature analysis to the original WOA algorithm to utilize 3D search space (3D-WOA). Simulations show that the proposed algorithm can be successfully used for hyperparameters optimization, achieving accuracy of 89.85% and 80.60% for Fashion MNIST and Reuters datasets, respectively.

摘要

深度学习领域的最大挑战之一是参数选择和优化过程。近年来,已经提出了包括生物启发式解决方案在内的不同算法来解决这个问题,但是仍然存在许多挑战,包括局部最小值、鞍点和消失梯度。在本文中,我们引入了基于驼背鲸群体觅食行为的鲸鱼优化算法(WOA)来优化神经网络超参数。我们希望强调的是,据我们所知,这是首次尝试使用鲸鱼优化算法来进行超参数优化任务。在详细描述了 WOA 算法之后,我们将其应用于深度学习,并解释了其应用,介绍了实现方法,并将提出的算法与其他著名算法(包括广泛使用的网格搜索和随机搜索方法)进行了比较。此外,我们还对原始的 WOA 算法进行了三维特征分析,以利用三维搜索空间(3D-WOA)。仿真结果表明,所提出的算法可成功地用于超参数优化,在 Fashion MNIST 和 Reuters 数据集上分别达到了 89.85%和 80.60%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f93/8659805/50b86a88d466/sensors-21-08003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验