Suppr超能文献

基于深度学习的 COVID-19 感染预测创新集成模型。

An innovative ensemble model based on deep learning for predicting COVID-19 infection.

机构信息

School of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130021, China.

College of Computer Science and Technology, Jilin University, Changchun, 130012, China.

出版信息

Sci Rep. 2023 Jul 29;13(1):12322. doi: 10.1038/s41598-023-39408-8.

Abstract

Nowadays, global public health crises are occurring more frequently, and accurate prediction of these diseases can reduce the burden on the healthcare system. Taking COVID-19 as an example, accurate prediction of infection can assist experts in effectively allocating medical resources and diagnosing diseases. Currently, scholars worldwide use single model approaches or epidemiology models more often to predict the outbreak trend of COVID-19, resulting in poor prediction accuracy. Although a few studies have employed ensemble models, there is still room for improvement in their performance. In addition, there are only a few models that use the laboratory results of patients to predict COVID-19 infection. To address these issues, research efforts should focus on improving disease prediction performance and expanding the use of medical disease prediction models. In this paper, we propose an innovative deep learning model Whale Optimization Convolutional Neural Networks (CNN), Long-Short Term Memory (LSTM) and Artificial Neural Network (ANN) called WOCLSA which incorporates three models ANN, CNN and LSTM. The WOCLSA model utilizes the Whale Optimization Algorithm to optimize the neuron number, dropout and batch size parameters in the integrated model of ANN, CNN and LSTM, thereby finding the global optimal solution parameters. WOCLSA employs 18 patient indicators as predictors, and compares its results with three other ensemble deep learning models. All models were validated with train-test split approaches. We evaluate and compare our proposed model and other models using accuracy, F1 score, recall, AUC and precision metrics. Through many studies and tests, our results show that our prediction models can identify patients with COVID-19 infection at the AUC of 91%, 91%, and 93% respectively. Other prediction results achieve a respectable accuracy of 92.82%, 92.79%, and 91.66% respectively, f1-score of 93.41%, 92.79%, and 92.33% respectively, precision of 93.41%, 92.79%, and 92.33% respectively, recall of 93.41%, 92.79%, and 92.33% respectively. All of these exceed 91%, surpassing those of comparable models. The execution time of WOCLSA is also an advantage. Therefore, the WOCLSA ensemble model can be used to assist in verifying laboratory research results and predict and to judge various diseases in public health events.

摘要

如今,全球公共卫生危机频发,准确预测这些疾病可以减轻医疗系统的负担。以 COVID-19 为例,准确预测感染可以帮助专家有效分配医疗资源和诊断疾病。目前,全球学者更多地使用单一模型方法或流行病学模型来预测 COVID-19 的爆发趋势,导致预测精度较差。虽然有一些研究采用了集成模型,但它们的性能仍有改进的空间。此外,只有少数模型使用患者的实验室结果来预测 COVID-19 感染。为了解决这些问题,研究工作应集中于提高疾病预测性能和扩大医疗疾病预测模型的使用。在本文中,我们提出了一种创新的深度学习模型鲸鱼优化卷积神经网络(CNN)、长短期记忆(LSTM)和人工神经网络(ANN),称为 WOCLSA,它结合了三个模型 ANN、CNN 和 LSTM。WOCLSA 模型利用鲸鱼优化算法优化 ANN、CNN 和 LSTM 集成模型中的神经元数量、辍学和批量大小参数,从而找到全局最优解参数。WOCLSA 使用 18 个患者指标作为预测因子,并将其结果与另外三个集成深度学习模型进行比较。所有模型均采用训练-测试分割方法进行验证。我们使用准确率、F1 得分、召回率、AUC 和精度等指标评估和比较我们提出的模型和其他模型。通过多项研究和测试,我们的结果表明,我们的预测模型可以在 AUC 分别为 91%、91%和 93%的情况下识别 COVID-19 感染患者。其他预测结果的准确率分别为 92.82%、92.79%和 91.66%,F1 得分分别为 93.41%、92.79%和 92.33%,精度分别为 93.41%、92.79%和 92.33%,召回率分别为 93.41%、92.79%和 92.33%。所有这些都超过 91%,优于可比模型。WOCLSA 的执行时间也是一个优势。因此,WOCLSA 集成模型可用于辅助验证实验室研究结果和预测,并判断公共卫生事件中的各种疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cdb/10387055/15fb44fa6fb9/41598_2023_39408_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验