Computer Vision and Robotics Institute, University of Girona, 17003 Girona, Spain.
Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
Sensors (Basel). 2021 Dec 3;21(23):8090. doi: 10.3390/s21238090.
Recently, 6D pose estimation methods have shown robust performance on highly cluttered scenes and different illumination conditions. However, occlusions are still challenging, with recognition rates decreasing to less than 10% for half-visible objects in some datasets. In this paper, we propose to use top-down visual attention and color cues to boost performance of a state-of-the-art method on occluded scenarios. More specifically, color information is employed to detect potential points in the scene, improve feature-matching, and compute more precise fitting scores. The proposed method is evaluated on the Linemod occluded (LM-O), TUD light (TUD-L), Tejani (IC-MI) and Doumanoglou (IC-BIN) datasets, as part of the SiSo BOP benchmark, which includes challenging highly occluded cases, illumination changing scenarios, and multiple instances. The method is analyzed and discussed for different parameters, color spaces and metrics. The presented results show the validity of the proposed approach and their robustness against illumination changes and multiple instance scenarios, specially boosting the performance on relatively high occluded cases. The proposed solution provides an absolute improvement of up to 30% for levels of occlusion between 40% to 50%, outperforming other approaches with a best overall recall of 71% for the LM-O, 92% for TUD-L, 99.3% for IC-MI and 97.5% for IC-BIN.
最近,6D 位姿估计方法在高度杂乱的场景和不同光照条件下表现出了强大的性能。然而,遮挡仍然是一个挑战,在一些数据集上,对于半可见物体的识别率下降到不到 10%。在本文中,我们提出利用自上而下的视觉注意力和颜色线索来提高最先进方法在遮挡场景下的性能。更具体地说,颜色信息用于检测场景中的潜在点,改进特征匹配,并计算更精确的拟合分数。所提出的方法在 Linemod 遮挡 (LM-O)、TUD 光 (TUD-L)、Tejani (IC-MI) 和 Doumanoglou (IC-BIN) 数据集上进行了评估,作为 SiSo BOP 基准的一部分,其中包括具有挑战性的高度遮挡情况、光照变化场景和多个实例。该方法针对不同的参数、颜色空间和度量标准进行了分析和讨论。所提出的结果表明了所提出方法的有效性及其对光照变化和多个实例场景的鲁棒性,特别是在相对较高的遮挡情况下提高了性能。所提出的解决方案在遮挡程度为 40%到 50%之间时,提供了高达 30%的绝对改进,总体召回率最高,分别为 LM-O 的 71%、TUD-L 的 92%、IC-MI 的 99.3%和 IC-BIN 的 97.5%。