Suppr超能文献

基于视觉的水果采摘机器人的识别与定位方法:综述

Recognition and Localization Methods for Vision-Based Fruit Picking Robots: A Review.

作者信息

Tang Yunchao, Chen Mingyou, Wang Chenglin, Luo Lufeng, Li Jinhui, Lian Guoping, Zou Xiangjun

机构信息

College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou, China.

Key Laboratory of Key Technology on Agricultural Machine and Equipment, College of Engineering, South China Agricultural University, Guangzhou, China.

出版信息

Front Plant Sci. 2020 May 19;11:510. doi: 10.3389/fpls.2020.00510. eCollection 2020.

Abstract

The utilization of machine vision and its associated algorithms improves the efficiency, functionality, intelligence, and remote interactivity of harvesting robots in complex agricultural environments. Machine vision and its associated emerging technology promise huge potential in advanced agricultural applications. However, machine vision and its precise positioning still have many technical difficulties, making it difficult for most harvesting robots to achieve true commercial applications. This article reports the application and research progress of harvesting robots and vision technology in fruit picking. The potential applications of vision and quantitative methods of localization, target recognition, 3D reconstruction, and fault tolerance of complex agricultural environment are focused, and fault-tolerant technology designed for utilization with machine vision and robotic systems are also explored. The two main methods used in fruit recognition and localization are reviewed, including digital image processing technology and deep learning-based algorithms. The future challenges brought about by recognition and localization success rates are identified: target recognition in the presence of illumination changes and occlusion environments; target tracking in dynamic interference-laden environments, 3D target reconstruction, and fault tolerance of the vision system for agricultural robots. In the end, several open research problems specific to recognition and localization applications for fruit harvesting robots are mentioned, and the latest development and future development trends of machine vision are described.

摘要

机器视觉及其相关算法的应用提高了收获机器人在复杂农业环境中的效率、功能、智能性和远程交互性。机器视觉及其相关的新兴技术在先进农业应用中具有巨大潜力。然而,机器视觉及其精确定位仍存在许多技术难题,这使得大多数收获机器人难以实现真正的商业应用。本文报道了收获机器人和视觉技术在水果采摘方面的应用及研究进展。重点关注视觉的潜在应用以及复杂农业环境下定位、目标识别、三维重建和容错的定量方法,还探讨了为与机器视觉和机器人系统配合使用而设计的容错技术。回顾了水果识别与定位中使用的两种主要方法,包括数字图像处理技术和基于深度学习的算法。确定了识别和定位成功率带来的未来挑战:在光照变化和遮挡环境下的目标识别;在充满动态干扰的环境中的目标跟踪、三维目标重建以及农业机器人视觉系统的容错。最后,提到了水果收获机器人识别与定位应用特有的几个开放研究问题,并描述了机器视觉的最新发展和未来发展趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2372/7250149/95a19240607c/fpls-11-00510-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验