利用结构建模工具探索宿主易位效应蛋白。
Exploiting Structural Modelling Tools to Explore Host-Translocated Effector Proteins.
机构信息
School of Biological Science, University of Canterbury, Christchurch 8041, New Zealand.
School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
出版信息
Int J Mol Sci. 2021 Nov 30;22(23):12962. doi: 10.3390/ijms222312962.
Oomycete and fungal interactions with plants can be neutral, symbiotic or pathogenic with different impact on plant health and fitness. Both fungi and oomycetes can generate so-called effector proteins in order to successfully colonize the host plant. These proteins modify stress pathways, developmental processes and the innate immune system to the microbes' benefit, with a very different outcome for the plant. Investigating the biological and functional roles of effectors during plant-microbe interactions are accessible through bioinformatics and experimental approaches. The next generation protein modeling software RoseTTafold and AlphaFold2 have made significant progress in defining the 3D-structure of proteins by utilizing novel machine-learning algorithms using amino acid sequences as their only input. As these two methods rely on super computers, Google Colabfold alternatives have received significant attention, making the approaches more accessible to users. Here, we focus on current structural biology, sequence motif and domain knowledge of effector proteins from filamentous microbes and discuss the broader use of novel modelling strategies, namely AlphaFold2 and RoseTTafold, in the field of effector biology. Finally, we compare the original programs and their Colab versions to assess current strengths, ease of access, limitations and future applications.
卵菌和真菌与植物的相互作用可以是中性的、共生的或病原性的,对植物的健康和适应性有不同的影响。真菌和卵菌都可以产生所谓的效应蛋白,以便成功地定殖宿主植物。这些蛋白质修饰应激途径、发育过程和先天免疫系统,以促进微生物的生长,而对植物的影响则非常不同。通过生物信息学和实验方法,可以研究效应子在植物-微生物相互作用中的生物学和功能作用。下一代蛋白质建模软件 RoseTTafold 和 AlphaFold2 通过利用新型机器学习算法,仅使用氨基酸序列作为输入,在定义蛋白质的 3D 结构方面取得了重大进展。由于这两种方法都依赖于超级计算机,因此 Google Colabfold 的替代品引起了广泛关注,使这些方法更容易被用户使用。在这里,我们专注于丝状微生物效应蛋白的当前结构生物学、序列基序和结构域知识,并讨论了新型建模策略,即 AlphaFold2 和 RoseTTafold,在效应生物学领域的更广泛应用。最后,我们比较了原始程序及其 Colab 版本,以评估当前的优势、易用性、局限性和未来的应用。
相似文献
Int J Mol Sci. 2021-11-30
Trends Plant Sci. 2023-9
Annu Rev Phytopathol. 2006
Plant Signal Behav. 2019-1-9
Curr Opin Plant Biol. 2009-6-18
Mol Plant Pathol. 2020-10
Curr Opin Plant Biol. 2017-8
Microbiol Mol Biol Rev. 2017-3-29
引用本文的文献
Int J Mol Sci. 2023-3-26
Mol Biotechnol. 2024-4
本文引用的文献
Nat Methods. 2022-6
Nat Struct Mol Biol. 2021-9
Proteins. 2021-12
Proc Natl Acad Sci U S A. 2021-3-9
Front Genet. 2021-2-3