文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

畸形外囊菌效应子组库主要由结构相似、序列无关的扩展家族组成,与其他植物病原真菌的无毒蛋白具有预测的结构相似性。

The Venturia inaequalis effector repertoire is dominated by expanded families with predicted structural similarity, but unrelated sequence, to avirulence proteins from other plant-pathogenic fungi.

机构信息

Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.

The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, 1025, New Zealand.

出版信息

BMC Biol. 2022 Nov 3;20(1):246. doi: 10.1186/s12915-022-01442-9.


DOI:10.1186/s12915-022-01442-9
PMID:36329441
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9632046/
Abstract

BACKGROUND: Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS: We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS: Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.

摘要

背景:疮痂病是由活体营养真菌梨火疫病菌引起的,是世界范围内对苹果最重要的经济病害。在感染过程中,梨火疫病菌占据表皮下环境,在此环境中分泌毒力因子,称为效应子,以促进宿主定殖。与其他植物病原真菌一致,这些效应子中的许多预期是非酶蛋白,其中一些可以被相应的宿主抗性蛋白识别,从而激活植物防御,因此作为无毒决定因子。为了开发针对疮痂病的持久控制策略,需要更好地了解这些效应蛋白在促进梨火疫病菌表皮下生长以及激活、抑制或规避苹果中抗性蛋白介导的防御方面所起的作用。

结果:我们生成了梨火疫病菌在侵染苹果过程中的首个全面 RNA-seq 转录组。对该转录组的分析揭示了五个基因表达的时间波峰,分别在早期、中期或中晚期感染时达到峰值。虽然编码分泌的、非酶蛋白类效应子候选物(ECs)的基因数量在每个波峰中有所不同,但大多数属于在中晚期感染时表达峰值的波峰。基于序列相似性的光谱聚类确定,大多数 ECs 属于扩展蛋白家族。为了深入了解功能,使用 AlphaFold2 预测了 ECs 的三级结构。引人注目的是,尽管缺乏序列相似性,但许多 ECs 被预测具有与其他植物病原真菌无毒蛋白的结构相似性,包括 MAX、LARS、ToxA 和 FOLD 效应家族的成员。此外,还有几个其他 ECs,包括与 Leptosphaeria maculans 的 AvrLm6 无毒效应子具有序列相似性的 EC 家族,被预测采用 KP6 样折叠。因此,具有 KP6 样折叠的蛋白代表了植物病原真菌之间另一个效应子结构家族。

结论:我们的研究揭示了梨火疫病菌表皮下生长的转录组特征,并提供了一个丰富的效应子清单,可用于研究其在毒力和无毒方面的作用。此外,我们的研究支持了这样一种观点,即植物病原真菌中的许多序列无关的效应子共享共同的结构折叠。通过这种方式,我们的研究支持了许多真菌效应子通过复制从祖先基因进化而来,随后通过序列多样化产生序列无关但结构相似的蛋白的假说。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/9632046/5be9c9520591/12915_2022_1442_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/9632046/5140aec6b5d6/12915_2022_1442_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/9632046/603f49f5065d/12915_2022_1442_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/9632046/e13d2bc356ca/12915_2022_1442_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/9632046/5be9c9520591/12915_2022_1442_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/9632046/5140aec6b5d6/12915_2022_1442_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/9632046/603f49f5065d/12915_2022_1442_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/9632046/e13d2bc356ca/12915_2022_1442_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75f5/9632046/5be9c9520591/12915_2022_1442_Fig4_HTML.jpg

相似文献

[1]
The Venturia inaequalis effector repertoire is dominated by expanded families with predicted structural similarity, but unrelated sequence, to avirulence proteins from other plant-pathogenic fungi.

BMC Biol. 2022-11-3

[2]
Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range.

BMC Genomics. 2017-5-2

[3]
Venturia inaequalis: the causal agent of apple scab.

Mol Plant Pathol. 2010-8-26

[4]
Cell Wall Carbohydrate Dynamics during the Differentiation of Infection Structures by the Apple Scab Fungus, Venturia inaequalis.

Microbiol Spectr. 2023-6-15

[5]
Candidate effector gene identification in the ascomycete fungal phytopathogen Venturia inaequalis by expressed sequence tag analysis.

Mol Plant Pathol. 2009-5

[6]
A Large Family of AvrLm6-like Genes in the Apple and Pear Scab Pathogens, Venturia inaequalis and Venturia pirina.

Front Plant Sci. 2015-11-17

[7]
Genetic mapping of 14 avirulence genes in an EU-B04 × 1639 progeny of Venturia inaequalis.

Fungal Genet Biol. 2010-9-15

[8]
De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogen.

PLoS One. 2013-1-17

[9]
CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis.

Fungal Biol. 2022-1

[10]
Gene expression profiling by cDNA-AFLP reveals potential candidate genes for partial resistance of 'Président Roulin' against Venturia inaequalis.

BMC Genomics. 2014-11-29

引用本文的文献

[1]
Zymoseptoria tritici Effectors Structurally Related to Killer Proteins UmV-KP4 and UmV-KP6 Inhibit Fungal Growth, and Define Extended Protein Families in Fungi.

Mol Plant Pathol. 2025-8

[2]
The resistance awakens: Diversity at the DNA, RNA, and protein levels informs engineering of plant immune receptors from Arabidopsis to crops.

Plant Cell. 2025-5-9

[3]
Structure-guided insights into the biology of fungal effectors.

New Phytol. 2025-5

[4]
Foliar Pine Pathogens From Different Kingdoms Share Defence-Eliciting Effector Proteins.

Mol Plant Pathol. 2025-3

[5]
The Hemibiotrophic Apple Scab Fungus Induces a Biotrophic Interface but Lacks a Necrotrophic Stage.

J Fungi (Basel). 2024-11-29

[6]
Dual RNA-seq reveals distinct families of co-regulated and structurally conserved effectors in Botrytis cinerea infection of Arabidopsis thaliana.

BMC Biol. 2024-10-21

[7]
An array of Zymoseptoria tritici effectors suppress plant immune responses.

Mol Plant Pathol. 2024-10

[8]
Zinc-finger (ZiF) fold secreted effectors form a functionally diverse family across lineages of the blast fungus Magnaporthe oryzae.

PLoS Pathog. 2024-6

[9]
The structural landscape and diversity of Pyricularia oryzae MAX effectors revisited.

PLoS Pathog. 2024-5

[10]
The structural repertoire of f. sp. effectors revealed by experimental and computational studies.

Elife. 2024-2-27

本文引用的文献

[1]
The structural repertoire of f. sp. effectors revealed by experimental and computational studies.

Elife. 2024-2-27

[2]
A new family of structurally conserved fungal effectors displays epistatic interactions with plant resistance proteins.

PLoS Pathog. 2022-7

[3]
ColabFold: making protein folding accessible to all.

Nat Methods. 2022-6

[4]
Seeing is believing: Exploiting advances in structural biology to understand and engineer plant immunity.

Curr Opin Plant Biol. 2022-6

[5]
Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of Plant-Associated Fungi and Oomycetes.

Front Plant Sci. 2022-3-10

[6]
The necrotrophic effector ToxA from Parastagonospora nodorum interacts with wheat NHL proteins to facilitate Tsn1-mediated necrosis.

Plant J. 2022-4

[7]
CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis.

Fungal Biol. 2022-1

[8]
Exploiting Structural Modelling Tools to Explore Host-Translocated Effector Proteins.

Int J Mol Sci. 2021-11-30

[9]
An ancient antimicrobial protein co-opted by a fungal plant pathogen for in planta mycobiome manipulation.

Proc Natl Acad Sci U S A. 2021-12-7

[10]
The carbohydrate-active enzyme database: functions and literature.

Nucleic Acids Res. 2022-1-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索